QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#757543#8010. Hierarchies of JudgesmaspyAC ✓1050ms62656kbC++2327.6kb2024-11-17 10:02:182024-11-17 10:02:19

Judging History

你现在查看的是最新测评结果

  • [2024-11-17 10:02:19]
  • 评测
  • 测评结果:AC
  • 用时:1050ms
  • 内存:62656kb
  • [2024-11-17 10:02:18]
  • 提交

answer

#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"

struct has_mod_impl {
  template <class T>
  static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
  template <class T>
  static auto check(...) -> std::false_type;
};

template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};

template <typename mint>
mint inv(int n) {
  static const int mod = mint::get_mod();
  static vector<mint> dat = {0, 1};
  assert(0 <= n);
  if (n >= mod) n %= mod;
  while (len(dat) <= n) {
    int k = len(dat);
    int q = (mod + k - 1) / k;
    dat.eb(dat[k * q - mod] * mint::raw(q));
  }
  return dat[n];
}

template <typename mint>
mint fact(int n) {
  static const int mod = mint::get_mod();
  assert(0 <= n && n < mod);
  static vector<mint> dat = {1, 1};
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
  return dat[n];
}

template <typename mint>
mint fact_inv(int n) {
  static vector<mint> dat = {1, 1};
  if (n < 0) return mint(0);
  while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
  return dat[n];
}

template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
  return (mint(1) * ... * fact_inv<mint>(xs));
}

template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
  return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}

template <typename mint>
mint C_dense(int n, int k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  static vvc<mint> C;
  static int H = 0, W = 0;
  auto calc = [&](int i, int j) -> mint {
    if (i == 0) return (j == 0 ? mint(1) : mint(0));
    return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
  };
  if (W <= k) {
    FOR(i, H) {
      C[i].resize(k + 1);
      FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
    }
    W = k + 1;
  }
  if (H <= n) {
    C.resize(n + 1);
    FOR(i, H, n + 1) {
      C[i].resize(W);
      FOR(j, W) { C[i][j] = calc(i, j); }
    }
    H = n + 1;
  }
  return C[n][k];
}

template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
  assert(n >= 0);
  if (k < 0 || n < k) return 0;
  if constexpr (dense) return C_dense<mint>(n, k);
  if constexpr (!large) return multinomial<mint>(n, k, n - k);
  k = min(k, n - k);
  mint x(1);
  FOR(i, k) x *= mint(n - i);
  return x * fact_inv<mint>(k);
}

template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
  assert(n >= 0);
  assert(0 <= k && k <= n);
  if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
  return mint(1) / C<mint, 1>(n, k);
}

// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
  assert(n >= 0);
  if (d < 0) return mint(0);
  if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
  return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"

template <int mod>
struct modint {
  static constexpr u32 umod = u32(mod);
  static_assert(umod < u32(1) << 31);
  u32 val;

  static modint raw(u32 v) {
    modint x;
    x.val = v;
    return x;
  }
  constexpr modint() : val(0) {}
  constexpr modint(u32 x) : val(x % umod) {}
  constexpr modint(u64 x) : val(x % umod) {}
  constexpr modint(u128 x) : val(x % umod) {}
  constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
  constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
  bool operator<(const modint &other) const { return val < other.val; }
  modint &operator+=(const modint &p) {
    if ((val += p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator-=(const modint &p) {
    if ((val += umod - p.val) >= umod) val -= umod;
    return *this;
  }
  modint &operator*=(const modint &p) {
    val = u64(val) * p.val % umod;
    return *this;
  }
  modint &operator/=(const modint &p) {
    *this *= p.inverse();
    return *this;
  }
  modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
  modint operator+(const modint &p) const { return modint(*this) += p; }
  modint operator-(const modint &p) const { return modint(*this) -= p; }
  modint operator*(const modint &p) const { return modint(*this) *= p; }
  modint operator/(const modint &p) const { return modint(*this) /= p; }
  bool operator==(const modint &p) const { return val == p.val; }
  bool operator!=(const modint &p) const { return val != p.val; }
  modint inverse() const {
    int a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint(u);
  }
  modint pow(ll n) const {
    assert(n >= 0);
    modint ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  static constexpr int get_mod() { return mod; }
  // (n, r), r は 1 の 2^n 乗根
  static constexpr pair<int, int> ntt_info() {
    if (mod == 120586241) return {20, 74066978};
    if (mod == 167772161) return {25, 17};
    if (mod == 469762049) return {26, 30};
    if (mod == 754974721) return {24, 362};
    if (mod == 880803841) return {23, 211};
    if (mod == 943718401) return {22, 663003469};
    if (mod == 998244353) return {23, 31};
    if (mod == 1004535809) return {21, 582313106};
    if (mod == 1012924417) return {21, 368093570};
    return {-1, -1};
  }
  static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};

#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
  fastio::rd(x.val);
  x.val %= mod;
  // assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
  fastio::wt(x.val);
}
#endif

using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"

#line 2 "/home/maspy/compro/library/poly/ntt.hpp"

template <class mint>
void ntt(vector<mint>& a, bool inverse) {
  assert(mint::can_ntt());
  const int rank2 = mint::ntt_info().fi;
  const int mod = mint::get_mod();
  static array<mint, 30> root, iroot;
  static array<mint, 30> rate2, irate2;
  static array<mint, 30> rate3, irate3;

  assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));

  static bool prepared = 0;
  if (!prepared) {
    prepared = 1;
    root[rank2] = mint::ntt_info().se;
    iroot[rank2] = mint(1) / root[rank2];
    FOR_R(i, rank2) {
      root[i] = root[i + 1] * root[i + 1];
      iroot[i] = iroot[i + 1] * iroot[i + 1];
    }
    mint prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 2; i++) {
      rate2[i] = root[i + 2] * prod;
      irate2[i] = iroot[i + 2] * iprod;
      prod *= iroot[i + 2];
      iprod *= root[i + 2];
    }
    prod = 1, iprod = 1;
    for (int i = 0; i <= rank2 - 3; i++) {
      rate3[i] = root[i + 3] * prod;
      irate3[i] = iroot[i + 3] * iprod;
      prod *= iroot[i + 3];
      iprod *= root[i + 3];
    }
  }

  int n = int(a.size());
  int h = topbit(n);
  assert(n == 1 << h);
  if (!inverse) {
    int len = 0;
    while (len < h) {
      if (h - len == 1) {
        int p = 1 << (h - len - 1);
        mint rot = 1;
        FOR(s, 1 << len) {
          int offset = s << (h - len);
          FOR(i, p) {
            auto l = a[i + offset];
            auto r = a[i + offset + p] * rot;
            a[i + offset] = l + r;
            a[i + offset + p] = l - r;
          }
          rot *= rate2[topbit(~s & -~s)];
        }
        len++;
      } else {
        int p = 1 << (h - len - 2);
        mint rot = 1, imag = root[2];
        for (int s = 0; s < (1 << len); s++) {
          mint rot2 = rot * rot;
          mint rot3 = rot2 * rot;
          int offset = s << (h - len);
          for (int i = 0; i < p; i++) {
            u64 mod2 = u64(mod) * mod;
            u64 a0 = a[i + offset].val;
            u64 a1 = u64(a[i + offset + p].val) * rot.val;
            u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
            u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
            u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
            u64 na2 = mod2 - a2;
            a[i + offset] = a0 + a2 + a1 + a3;
            a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
            a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
          }
          rot *= rate3[topbit(~s & -~s)];
        }
        len += 2;
      }
    }
  } else {
    mint coef = mint(1) / mint(len(a));
    FOR(i, len(a)) a[i] *= coef;
    int len = h;
    while (len) {
      if (len == 1) {
        int p = 1 << (h - len);
        mint irot = 1;
        FOR(s, 1 << (len - 1)) {
          int offset = s << (h - len + 1);
          FOR(i, p) {
            u64 l = a[i + offset].val;
            u64 r = a[i + offset + p].val;
            a[i + offset] = l + r;
            a[i + offset + p] = (mod + l - r) * irot.val;
          }
          irot *= irate2[topbit(~s & -~s)];
        }
        len--;
      } else {
        int p = 1 << (h - len);
        mint irot = 1, iimag = iroot[2];
        FOR(s, (1 << (len - 2))) {
          mint irot2 = irot * irot;
          mint irot3 = irot2 * irot;
          int offset = s << (h - len + 2);
          for (int i = 0; i < p; i++) {
            u64 a0 = a[i + offset + 0 * p].val;
            u64 a1 = a[i + offset + 1 * p].val;
            u64 a2 = a[i + offset + 2 * p].val;
            u64 a3 = a[i + offset + 3 * p].val;
            u64 x = (mod + a2 - a3) * iimag.val % mod;
            a[i + offset] = a0 + a1 + a2 + a3;
            a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
            a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
            a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
          }
          irot *= irate3[topbit(~s & -~s)];
        }
        len -= 2;
      }
    }
  }
}
#line 4 "/home/maspy/compro/library/poly/online/online_convolution.hpp"

/*
query(i):a[i], b[i] を与えて ab[i] を得る。
2^{17}:127ms
2^{18}:277ms
2^{19}:570ms
2^{20}:1220ms
*/
template <class mint>
struct Online_Convolution {
  vc<mint> f, g, h, b0, b1;
  vvc<mint> fm, gm;
  int p;

  Online_Convolution() : p(0) { assert(mint::can_ntt()); }

  mint query(int i, mint f_i, mint g_i) {
    assert(i == p);
    f.eb(f_i), g.eb(g_i);
    int z = __builtin_ctz(p + 2), w = 1 << z, s;
    if (p + 2 == w) {
      b0 = f, b0.resize(2 * w);
      ntt(b0, false);
      fm.eb(b0.begin(), b0.begin() + w);
      b1 = g, b1.resize(2 * w);
      ntt(b1, false);
      gm.eb(b1.begin(), b1.begin() + w);
      FOR(i, 2 * w) b0[i] *= b1[i];
      s = w - 2;
      h.resize(2 * s + 2);
    } else {
      b0.assign(f.end() - w, f.end()), b0.resize(2 * w);
      ntt(b0, false);
      FOR(i, 2 * w) b0[i] *= gm[z][i];
      b1.assign(g.end() - w, g.end()), b1.resize(2 * w);
      ntt(b1, false);
      FOR(i, 2 * w) b0[i] += b1[i] * fm[z][i];
      s = w - 1;
    }
    ntt(b0, true);
    FOR(i, s + 1) h[p + i] += b0[s + i];
    return h[p++];
  }
};
#line 3 "/home/maspy/compro/library/poly/online/online_exp.hpp"

// query(i):f[i] を与えて (f^{-1})[i] を得る。
template <typename mint>
struct Online_Exp {
  vc<mint> F;
  Online_Convolution<mint> X;

  mint query(int i, mint f_i) {
    assert(i == len(F));
    if (i == 0) {
      assert(f_i == mint(0));
      F.eb(mint(1));
      return mint(1);
    }
    mint x = inv<mint>(i) * X.query(i - 1, F[i - 1], f_i * mint(i));
    F.eb(x);
    return x;
  }
};
#line 3 "/home/maspy/compro/library/poly/online/online_division.hpp"

// query(i):a[i], b[i] を与えて (f/g)[i] を得る。
// g[0] == 1 を仮定する
template <typename mint>
struct Online_Division {
  vc<mint> f, g, F;
  Online_Convolution<mint> X;

  mint query(int i, mint f_i, mint g_i) {
    assert(i == len(f));
    f.eb(f_i);
    g.eb(g_i);
    if (i == 0) {
      assert(g_i == mint(1));
      F.eb(f_i);
      return F[0];
    }
    F.eb(f[i] - X.query(i - 1, F[i - 1], g[i]));
    return F[i];
  }
};
#line 2 "/home/maspy/compro/library/poly/online/online_inv.hpp"

// query(i):f[i] を与えて (f^{-1})[i] を得る。
// f[0] == 1 を仮定する。
template <typename mint>
struct Online_Inv {
  Online_Division<mint> X;

  mint query(int i, mint f_i) {
    mint g_i = (i == 0 ? mint(1) : mint(0));
    return X.query(i, g_i, f_i);
  }
};
#line 3 "/home/maspy/compro/library/poly/online/online_square.hpp"

/*
query(i):a[i]] を与えて (a^2)[i] を得る。
2^{17}:52ms
2^{18}:107ms
2^{19}:237ms
2^{20}:499ms
*/
template <class mint>
struct Online_Square {
  vc<mint> f, h, b0, b1;
  vvc<mint> fm;
  int p;

  Online_Square() : p(0) { assert(mint::can_ntt()); }

  mint query(int i, mint f_i) {
    assert(i == p);
    f.eb(f_i);
    int z = __builtin_ctz(p + 2), w = 1 << z, s;
    if (p + 2 == w) {
      b0 = f, b0.resize(2 * w);
      ntt(b0, false);
      fm.eb(b0.begin(), b0.begin() + w);
      FOR(i, 2 * w) b0[i] *= b0[i];
      s = w - 2;
      h.resize(2 * s + 2);
    } else {
      b0.assign(f.end() - w, f.end()), b0.resize(2 * w);
      ntt(b0, false);
      FOR(i, 2 * w) b0[i] *= mint(2) * fm[z][i];
      s = w - 1;
    }
    ntt(b0, true);
    FOR(i, s + 1) h[p + i] += b0[s + i];
    return h[p++];
  }
};
#line 10 "main.cpp"

using mint = modint998;

void solve() {
  LL(N);

  vc<mint> F(N + 1), G(N + 1);
  Online_Convolution<mint> FG;
  Online_Exp<mint> EG;
  Online_Exp<mint> E_FG;
  Online_Square<mint> FF;
  Online_Convolution<mint> FF_E_FG;
  Online_Inv<mint> INV;
  Online_Convolution<mint> XF, XG;

  FOR(i, N) {
    mint eg = EG.query(i, G[i]);
    mint fg = FG.query(i, F[i], G[i]);
    mint e_fg = E_FG.query(i, fg);
    mint inv = INV.query(i, i == 0 ? 1 : -F[i]);
    F[i + 1] = XF.query(i, eg - e_fg, inv);
    mint ff = FF.query(i, F[i]);
    mint ff_e_fg = FF_E_FG.query(i, ff, e_fg);
    G[i + 1] = XG.query(i, eg - ff_e_fg, inv);
  }
  mint f = F[N] * fact<mint>(N);
  mint g = G[N] * fact<mint>(N);
  mint ANS = f + g;
  print(ANS);
}

signed main() { solve(); }

这程序好像有点Bug,我给组数据试试?

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3616kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3972kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3696kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #4:

score: 0
Accepted
time: 1ms
memory: 3796kb

input:

100

output:

413875584

result:

ok 1 number(s): "413875584"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3684kb

input:

1

output:

1

result:

ok 1 number(s): "1"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3960kb

input:

2

output:

4

result:

ok 1 number(s): "4"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3612kb

input:

3

output:

24

result:

ok 1 number(s): "24"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3724kb

input:

4

output:

236

result:

ok 1 number(s): "236"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3720kb

input:

5

output:

3190

result:

ok 1 number(s): "3190"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3972kb

input:

6

output:

55182

result:

ok 1 number(s): "55182"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3780kb

input:

7

output:

1165220

result:

ok 1 number(s): "1165220"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3764kb

input:

8

output:

29013896

result:

ok 1 number(s): "29013896"

Test #13:

score: 0
Accepted
time: 0ms
memory: 3720kb

input:

9

output:

832517514

result:

ok 1 number(s): "832517514"

Test #14:

score: 0
Accepted
time: 0ms
memory: 3716kb

input:

10

output:

96547079

result:

ok 1 number(s): "96547079"

Test #15:

score: 0
Accepted
time: 0ms
memory: 3668kb

input:

11

output:

296100513

result:

ok 1 number(s): "296100513"

Test #16:

score: 0
Accepted
time: 0ms
memory: 4020kb

input:

12

output:

672446962

result:

ok 1 number(s): "672446962"

Test #17:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

13

output:

986909297

result:

ok 1 number(s): "986909297"

Test #18:

score: 0
Accepted
time: 0ms
memory: 3740kb

input:

14

output:

306542229

result:

ok 1 number(s): "306542229"

Test #19:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

15

output:

8548107

result:

ok 1 number(s): "8548107"

Test #20:

score: 0
Accepted
time: 0ms
memory: 3796kb

input:

16

output:

773960239

result:

ok 1 number(s): "773960239"

Test #21:

score: 0
Accepted
time: 0ms
memory: 3844kb

input:

17

output:

611627547

result:

ok 1 number(s): "611627547"

Test #22:

score: 0
Accepted
time: 0ms
memory: 3732kb

input:

18

output:

91793980

result:

ok 1 number(s): "91793980"

Test #23:

score: 0
Accepted
time: 0ms
memory: 3992kb

input:

19

output:

689202618

result:

ok 1 number(s): "689202618"

Test #24:

score: 0
Accepted
time: 0ms
memory: 3748kb

input:

20

output:

605957782

result:

ok 1 number(s): "605957782"

Test #25:

score: 0
Accepted
time: 34ms
memory: 7084kb

input:

10000

output:

713782215

result:

ok 1 number(s): "713782215"

Test #26:

score: 0
Accepted
time: 83ms
memory: 11052kb

input:

20000

output:

337916836

result:

ok 1 number(s): "337916836"

Test #27:

score: 0
Accepted
time: 118ms
memory: 11652kb

input:

30000

output:

580803285

result:

ok 1 number(s): "580803285"

Test #28:

score: 0
Accepted
time: 172ms
memory: 17892kb

input:

40000

output:

732660392

result:

ok 1 number(s): "732660392"

Test #29:

score: 0
Accepted
time: 223ms
memory: 18292kb

input:

50000

output:

660835595

result:

ok 1 number(s): "660835595"

Test #30:

score: 0
Accepted
time: 264ms
memory: 19136kb

input:

60000

output:

323452070

result:

ok 1 number(s): "323452070"

Test #31:

score: 0
Accepted
time: 330ms
memory: 30672kb

input:

70000

output:

307315915

result:

ok 1 number(s): "307315915"

Test #32:

score: 0
Accepted
time: 372ms
memory: 31544kb

input:

80000

output:

951757567

result:

ok 1 number(s): "951757567"

Test #33:

score: 0
Accepted
time: 427ms
memory: 32524kb

input:

90000

output:

426123208

result:

ok 1 number(s): "426123208"

Test #34:

score: 0
Accepted
time: 483ms
memory: 33284kb

input:

100000

output:

827418228

result:

ok 1 number(s): "827418228"

Test #35:

score: 0
Accepted
time: 514ms
memory: 34156kb

input:

110000

output:

541614559

result:

ok 1 number(s): "541614559"

Test #36:

score: 0
Accepted
time: 559ms
memory: 35004kb

input:

120000

output:

184688986

result:

ok 1 number(s): "184688986"

Test #37:

score: 0
Accepted
time: 600ms
memory: 35864kb

input:

130000

output:

898089371

result:

ok 1 number(s): "898089371"

Test #38:

score: 0
Accepted
time: 745ms
memory: 56768kb

input:

140000

output:

949540221

result:

ok 1 number(s): "949540221"

Test #39:

score: 0
Accepted
time: 774ms
memory: 57676kb

input:

150000

output:

767689851

result:

ok 1 number(s): "767689851"

Test #40:

score: 0
Accepted
time: 818ms
memory: 58768kb

input:

160000

output:

553494563

result:

ok 1 number(s): "553494563"

Test #41:

score: 0
Accepted
time: 872ms
memory: 59680kb

input:

170000

output:

270711750

result:

ok 1 number(s): "270711750"

Test #42:

score: 0
Accepted
time: 924ms
memory: 60644kb

input:

180000

output:

108155689

result:

ok 1 number(s): "108155689"

Test #43:

score: 0
Accepted
time: 950ms
memory: 61276kb

input:

190000

output:

327542856

result:

ok 1 number(s): "327542856"

Test #44:

score: 0
Accepted
time: 1050ms
memory: 62656kb

input:

200000

output:

236144151

result:

ok 1 number(s): "236144151"

Test #45:

score: 0
Accepted
time: 1043ms
memory: 62260kb

input:

198798

output:

16935264

result:

ok 1 number(s): "16935264"

Extra Test:

score: 0
Extra Test Passed