QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#757543 | #8010. Hierarchies of Judges | maspy | AC ✓ | 1050ms | 62656kb | C++23 | 27.6kb | 2024-11-17 10:02:18 | 2024-11-17 10:02:19 |
Judging History
answer
#line 1 "/home/maspy/compro/library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T kth_bit(int k) {
return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
return x >> k & 1;
}
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
vc<T> &res = first;
(res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "/home/maspy/compro/library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"
#line 2 "/home/maspy/compro/library/mod/modint_common.hpp"
struct has_mod_impl {
template <class T>
static auto check(T &&x) -> decltype(x.get_mod(), std::true_type{});
template <class T>
static auto check(...) -> std::false_type;
};
template <class T>
class has_mod : public decltype(has_mod_impl::check<T>(std::declval<T>())) {};
template <typename mint>
mint inv(int n) {
static const int mod = mint::get_mod();
static vector<mint> dat = {0, 1};
assert(0 <= n);
if (n >= mod) n %= mod;
while (len(dat) <= n) {
int k = len(dat);
int q = (mod + k - 1) / k;
dat.eb(dat[k * q - mod] * mint::raw(q));
}
return dat[n];
}
template <typename mint>
mint fact(int n) {
static const int mod = mint::get_mod();
assert(0 <= n && n < mod);
static vector<mint> dat = {1, 1};
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * mint::raw(len(dat)));
return dat[n];
}
template <typename mint>
mint fact_inv(int n) {
static vector<mint> dat = {1, 1};
if (n < 0) return mint(0);
while (len(dat) <= n) dat.eb(dat[len(dat) - 1] * inv<mint>(len(dat)));
return dat[n];
}
template <class mint, class... Ts>
mint fact_invs(Ts... xs) {
return (mint(1) * ... * fact_inv<mint>(xs));
}
template <typename mint, class Head, class... Tail>
mint multinomial(Head &&head, Tail &&... tail) {
return fact<mint>(head) * fact_invs<mint>(std::forward<Tail>(tail)...);
}
template <typename mint>
mint C_dense(int n, int k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
static vvc<mint> C;
static int H = 0, W = 0;
auto calc = [&](int i, int j) -> mint {
if (i == 0) return (j == 0 ? mint(1) : mint(0));
return C[i - 1][j] + (j ? C[i - 1][j - 1] : 0);
};
if (W <= k) {
FOR(i, H) {
C[i].resize(k + 1);
FOR(j, W, k + 1) { C[i][j] = calc(i, j); }
}
W = k + 1;
}
if (H <= n) {
C.resize(n + 1);
FOR(i, H, n + 1) {
C[i].resize(W);
FOR(j, W) { C[i][j] = calc(i, j); }
}
H = n + 1;
}
return C[n][k];
}
template <typename mint, bool large = false, bool dense = false>
mint C(ll n, ll k) {
assert(n >= 0);
if (k < 0 || n < k) return 0;
if constexpr (dense) return C_dense<mint>(n, k);
if constexpr (!large) return multinomial<mint>(n, k, n - k);
k = min(k, n - k);
mint x(1);
FOR(i, k) x *= mint(n - i);
return x * fact_inv<mint>(k);
}
template <typename mint, bool large = false>
mint C_inv(ll n, ll k) {
assert(n >= 0);
assert(0 <= k && k <= n);
if (!large) return fact_inv<mint>(n) * fact<mint>(k) * fact<mint>(n - k);
return mint(1) / C<mint, 1>(n, k);
}
// [x^d](1-x)^{-n}
template <typename mint, bool large = false, bool dense = false>
mint C_negative(ll n, ll d) {
assert(n >= 0);
if (d < 0) return mint(0);
if (n == 0) { return (d == 0 ? mint(1) : mint(0)); }
return C<mint, large, dense>(n + d - 1, d);
}
#line 3 "/home/maspy/compro/library/mod/modint.hpp"
template <int mod>
struct modint {
static constexpr u32 umod = u32(mod);
static_assert(umod < u32(1) << 31);
u32 val;
static modint raw(u32 v) {
modint x;
x.val = v;
return x;
}
constexpr modint() : val(0) {}
constexpr modint(u32 x) : val(x % umod) {}
constexpr modint(u64 x) : val(x % umod) {}
constexpr modint(u128 x) : val(x % umod) {}
constexpr modint(int x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(ll x) : val((x %= mod) < 0 ? x + mod : x){};
constexpr modint(i128 x) : val((x %= mod) < 0 ? x + mod : x){};
bool operator<(const modint &other) const { return val < other.val; }
modint &operator+=(const modint &p) {
if ((val += p.val) >= umod) val -= umod;
return *this;
}
modint &operator-=(const modint &p) {
if ((val += umod - p.val) >= umod) val -= umod;
return *this;
}
modint &operator*=(const modint &p) {
val = u64(val) * p.val % umod;
return *this;
}
modint &operator/=(const modint &p) {
*this *= p.inverse();
return *this;
}
modint operator-() const { return modint::raw(val ? mod - val : u32(0)); }
modint operator+(const modint &p) const { return modint(*this) += p; }
modint operator-(const modint &p) const { return modint(*this) -= p; }
modint operator*(const modint &p) const { return modint(*this) *= p; }
modint operator/(const modint &p) const { return modint(*this) /= p; }
bool operator==(const modint &p) const { return val == p.val; }
bool operator!=(const modint &p) const { return val != p.val; }
modint inverse() const {
int a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint(u);
}
modint pow(ll n) const {
assert(n >= 0);
modint ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
static constexpr int get_mod() { return mod; }
// (n, r), r は 1 の 2^n 乗根
static constexpr pair<int, int> ntt_info() {
if (mod == 120586241) return {20, 74066978};
if (mod == 167772161) return {25, 17};
if (mod == 469762049) return {26, 30};
if (mod == 754974721) return {24, 362};
if (mod == 880803841) return {23, 211};
if (mod == 943718401) return {22, 663003469};
if (mod == 998244353) return {23, 31};
if (mod == 1004535809) return {21, 582313106};
if (mod == 1012924417) return {21, 368093570};
return {-1, -1};
}
static constexpr bool can_ntt() { return ntt_info().fi != -1; }
};
#ifdef FASTIO
template <int mod>
void rd(modint<mod> &x) {
fastio::rd(x.val);
x.val %= mod;
// assert(0 <= x.val && x.val < mod);
}
template <int mod>
void wt(modint<mod> x) {
fastio::wt(x.val);
}
#endif
using modint107 = modint<1000000007>;
using modint998 = modint<998244353>;
#line 5 "main.cpp"
#line 2 "/home/maspy/compro/library/poly/ntt.hpp"
template <class mint>
void ntt(vector<mint>& a, bool inverse) {
assert(mint::can_ntt());
const int rank2 = mint::ntt_info().fi;
const int mod = mint::get_mod();
static array<mint, 30> root, iroot;
static array<mint, 30> rate2, irate2;
static array<mint, 30> rate3, irate3;
assert(rank2 != -1 && len(a) <= (1 << max(0, rank2)));
static bool prepared = 0;
if (!prepared) {
prepared = 1;
root[rank2] = mint::ntt_info().se;
iroot[rank2] = mint(1) / root[rank2];
FOR_R(i, rank2) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
int n = int(a.size());
int h = topbit(n);
assert(n == 1 << h);
if (!inverse) {
int len = 0;
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
FOR(s, 1 << len) {
int offset = s << (h - len);
FOR(i, p) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
rot *= rate2[topbit(~s & -~s)];
}
len++;
} else {
int p = 1 << (h - len - 2);
mint rot = 1, imag = root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
u64 mod2 = u64(mod) * mod;
u64 a0 = a[i + offset].val;
u64 a1 = u64(a[i + offset + p].val) * rot.val;
u64 a2 = u64(a[i + offset + 2 * p].val) * rot2.val;
u64 a3 = u64(a[i + offset + 3 * p].val) * rot3.val;
u64 a1na3imag = (a1 + mod2 - a3) % mod * imag.val;
u64 na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
rot *= rate3[topbit(~s & -~s)];
}
len += 2;
}
}
} else {
mint coef = mint(1) / mint(len(a));
FOR(i, len(a)) a[i] *= coef;
int len = h;
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
FOR(s, 1 << (len - 1)) {
int offset = s << (h - len + 1);
FOR(i, p) {
u64 l = a[i + offset].val;
u64 r = a[i + offset + p].val;
a[i + offset] = l + r;
a[i + offset + p] = (mod + l - r) * irot.val;
}
irot *= irate2[topbit(~s & -~s)];
}
len--;
} else {
int p = 1 << (h - len);
mint irot = 1, iimag = iroot[2];
FOR(s, (1 << (len - 2))) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
u64 a0 = a[i + offset + 0 * p].val;
u64 a1 = a[i + offset + 1 * p].val;
u64 a2 = a[i + offset + 2 * p].val;
u64 a3 = a[i + offset + 3 * p].val;
u64 x = (mod + a2 - a3) * iimag.val % mod;
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] = (a0 + mod - a1 + x) * irot.val;
a[i + offset + 2 * p] = (a0 + a1 + 2 * mod - a2 - a3) * irot2.val;
a[i + offset + 3 * p] = (a0 + 2 * mod - a1 - x) * irot3.val;
}
irot *= irate3[topbit(~s & -~s)];
}
len -= 2;
}
}
}
}
#line 4 "/home/maspy/compro/library/poly/online/online_convolution.hpp"
/*
query(i):a[i], b[i] を与えて ab[i] を得る。
2^{17}:127ms
2^{18}:277ms
2^{19}:570ms
2^{20}:1220ms
*/
template <class mint>
struct Online_Convolution {
vc<mint> f, g, h, b0, b1;
vvc<mint> fm, gm;
int p;
Online_Convolution() : p(0) { assert(mint::can_ntt()); }
mint query(int i, mint f_i, mint g_i) {
assert(i == p);
f.eb(f_i), g.eb(g_i);
int z = __builtin_ctz(p + 2), w = 1 << z, s;
if (p + 2 == w) {
b0 = f, b0.resize(2 * w);
ntt(b0, false);
fm.eb(b0.begin(), b0.begin() + w);
b1 = g, b1.resize(2 * w);
ntt(b1, false);
gm.eb(b1.begin(), b1.begin() + w);
FOR(i, 2 * w) b0[i] *= b1[i];
s = w - 2;
h.resize(2 * s + 2);
} else {
b0.assign(f.end() - w, f.end()), b0.resize(2 * w);
ntt(b0, false);
FOR(i, 2 * w) b0[i] *= gm[z][i];
b1.assign(g.end() - w, g.end()), b1.resize(2 * w);
ntt(b1, false);
FOR(i, 2 * w) b0[i] += b1[i] * fm[z][i];
s = w - 1;
}
ntt(b0, true);
FOR(i, s + 1) h[p + i] += b0[s + i];
return h[p++];
}
};
#line 3 "/home/maspy/compro/library/poly/online/online_exp.hpp"
// query(i):f[i] を与えて (f^{-1})[i] を得る。
template <typename mint>
struct Online_Exp {
vc<mint> F;
Online_Convolution<mint> X;
mint query(int i, mint f_i) {
assert(i == len(F));
if (i == 0) {
assert(f_i == mint(0));
F.eb(mint(1));
return mint(1);
}
mint x = inv<mint>(i) * X.query(i - 1, F[i - 1], f_i * mint(i));
F.eb(x);
return x;
}
};
#line 3 "/home/maspy/compro/library/poly/online/online_division.hpp"
// query(i):a[i], b[i] を与えて (f/g)[i] を得る。
// g[0] == 1 を仮定する
template <typename mint>
struct Online_Division {
vc<mint> f, g, F;
Online_Convolution<mint> X;
mint query(int i, mint f_i, mint g_i) {
assert(i == len(f));
f.eb(f_i);
g.eb(g_i);
if (i == 0) {
assert(g_i == mint(1));
F.eb(f_i);
return F[0];
}
F.eb(f[i] - X.query(i - 1, F[i - 1], g[i]));
return F[i];
}
};
#line 2 "/home/maspy/compro/library/poly/online/online_inv.hpp"
// query(i):f[i] を与えて (f^{-1})[i] を得る。
// f[0] == 1 を仮定する。
template <typename mint>
struct Online_Inv {
Online_Division<mint> X;
mint query(int i, mint f_i) {
mint g_i = (i == 0 ? mint(1) : mint(0));
return X.query(i, g_i, f_i);
}
};
#line 3 "/home/maspy/compro/library/poly/online/online_square.hpp"
/*
query(i):a[i]] を与えて (a^2)[i] を得る。
2^{17}:52ms
2^{18}:107ms
2^{19}:237ms
2^{20}:499ms
*/
template <class mint>
struct Online_Square {
vc<mint> f, h, b0, b1;
vvc<mint> fm;
int p;
Online_Square() : p(0) { assert(mint::can_ntt()); }
mint query(int i, mint f_i) {
assert(i == p);
f.eb(f_i);
int z = __builtin_ctz(p + 2), w = 1 << z, s;
if (p + 2 == w) {
b0 = f, b0.resize(2 * w);
ntt(b0, false);
fm.eb(b0.begin(), b0.begin() + w);
FOR(i, 2 * w) b0[i] *= b0[i];
s = w - 2;
h.resize(2 * s + 2);
} else {
b0.assign(f.end() - w, f.end()), b0.resize(2 * w);
ntt(b0, false);
FOR(i, 2 * w) b0[i] *= mint(2) * fm[z][i];
s = w - 1;
}
ntt(b0, true);
FOR(i, s + 1) h[p + i] += b0[s + i];
return h[p++];
}
};
#line 10 "main.cpp"
using mint = modint998;
void solve() {
LL(N);
vc<mint> F(N + 1), G(N + 1);
Online_Convolution<mint> FG;
Online_Exp<mint> EG;
Online_Exp<mint> E_FG;
Online_Square<mint> FF;
Online_Convolution<mint> FF_E_FG;
Online_Inv<mint> INV;
Online_Convolution<mint> XF, XG;
FOR(i, N) {
mint eg = EG.query(i, G[i]);
mint fg = FG.query(i, F[i], G[i]);
mint e_fg = E_FG.query(i, fg);
mint inv = INV.query(i, i == 0 ? 1 : -F[i]);
F[i + 1] = XF.query(i, eg - e_fg, inv);
mint ff = FF.query(i, F[i]);
mint ff_e_fg = FF_E_FG.query(i, ff, e_fg);
G[i + 1] = XG.query(i, eg - ff_e_fg, inv);
}
mint f = F[N] * fact<mint>(N);
mint g = G[N] * fact<mint>(N);
mint ANS = f + g;
print(ANS);
}
signed main() { solve(); }
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3616kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3972kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #3:
score: 0
Accepted
time: 0ms
memory: 3696kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #4:
score: 0
Accepted
time: 1ms
memory: 3796kb
input:
100
output:
413875584
result:
ok 1 number(s): "413875584"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3684kb
input:
1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3960kb
input:
2
output:
4
result:
ok 1 number(s): "4"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3612kb
input:
3
output:
24
result:
ok 1 number(s): "24"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3724kb
input:
4
output:
236
result:
ok 1 number(s): "236"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3720kb
input:
5
output:
3190
result:
ok 1 number(s): "3190"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3972kb
input:
6
output:
55182
result:
ok 1 number(s): "55182"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3780kb
input:
7
output:
1165220
result:
ok 1 number(s): "1165220"
Test #12:
score: 0
Accepted
time: 0ms
memory: 3764kb
input:
8
output:
29013896
result:
ok 1 number(s): "29013896"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3720kb
input:
9
output:
832517514
result:
ok 1 number(s): "832517514"
Test #14:
score: 0
Accepted
time: 0ms
memory: 3716kb
input:
10
output:
96547079
result:
ok 1 number(s): "96547079"
Test #15:
score: 0
Accepted
time: 0ms
memory: 3668kb
input:
11
output:
296100513
result:
ok 1 number(s): "296100513"
Test #16:
score: 0
Accepted
time: 0ms
memory: 4020kb
input:
12
output:
672446962
result:
ok 1 number(s): "672446962"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
13
output:
986909297
result:
ok 1 number(s): "986909297"
Test #18:
score: 0
Accepted
time: 0ms
memory: 3740kb
input:
14
output:
306542229
result:
ok 1 number(s): "306542229"
Test #19:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
15
output:
8548107
result:
ok 1 number(s): "8548107"
Test #20:
score: 0
Accepted
time: 0ms
memory: 3796kb
input:
16
output:
773960239
result:
ok 1 number(s): "773960239"
Test #21:
score: 0
Accepted
time: 0ms
memory: 3844kb
input:
17
output:
611627547
result:
ok 1 number(s): "611627547"
Test #22:
score: 0
Accepted
time: 0ms
memory: 3732kb
input:
18
output:
91793980
result:
ok 1 number(s): "91793980"
Test #23:
score: 0
Accepted
time: 0ms
memory: 3992kb
input:
19
output:
689202618
result:
ok 1 number(s): "689202618"
Test #24:
score: 0
Accepted
time: 0ms
memory: 3748kb
input:
20
output:
605957782
result:
ok 1 number(s): "605957782"
Test #25:
score: 0
Accepted
time: 34ms
memory: 7084kb
input:
10000
output:
713782215
result:
ok 1 number(s): "713782215"
Test #26:
score: 0
Accepted
time: 83ms
memory: 11052kb
input:
20000
output:
337916836
result:
ok 1 number(s): "337916836"
Test #27:
score: 0
Accepted
time: 118ms
memory: 11652kb
input:
30000
output:
580803285
result:
ok 1 number(s): "580803285"
Test #28:
score: 0
Accepted
time: 172ms
memory: 17892kb
input:
40000
output:
732660392
result:
ok 1 number(s): "732660392"
Test #29:
score: 0
Accepted
time: 223ms
memory: 18292kb
input:
50000
output:
660835595
result:
ok 1 number(s): "660835595"
Test #30:
score: 0
Accepted
time: 264ms
memory: 19136kb
input:
60000
output:
323452070
result:
ok 1 number(s): "323452070"
Test #31:
score: 0
Accepted
time: 330ms
memory: 30672kb
input:
70000
output:
307315915
result:
ok 1 number(s): "307315915"
Test #32:
score: 0
Accepted
time: 372ms
memory: 31544kb
input:
80000
output:
951757567
result:
ok 1 number(s): "951757567"
Test #33:
score: 0
Accepted
time: 427ms
memory: 32524kb
input:
90000
output:
426123208
result:
ok 1 number(s): "426123208"
Test #34:
score: 0
Accepted
time: 483ms
memory: 33284kb
input:
100000
output:
827418228
result:
ok 1 number(s): "827418228"
Test #35:
score: 0
Accepted
time: 514ms
memory: 34156kb
input:
110000
output:
541614559
result:
ok 1 number(s): "541614559"
Test #36:
score: 0
Accepted
time: 559ms
memory: 35004kb
input:
120000
output:
184688986
result:
ok 1 number(s): "184688986"
Test #37:
score: 0
Accepted
time: 600ms
memory: 35864kb
input:
130000
output:
898089371
result:
ok 1 number(s): "898089371"
Test #38:
score: 0
Accepted
time: 745ms
memory: 56768kb
input:
140000
output:
949540221
result:
ok 1 number(s): "949540221"
Test #39:
score: 0
Accepted
time: 774ms
memory: 57676kb
input:
150000
output:
767689851
result:
ok 1 number(s): "767689851"
Test #40:
score: 0
Accepted
time: 818ms
memory: 58768kb
input:
160000
output:
553494563
result:
ok 1 number(s): "553494563"
Test #41:
score: 0
Accepted
time: 872ms
memory: 59680kb
input:
170000
output:
270711750
result:
ok 1 number(s): "270711750"
Test #42:
score: 0
Accepted
time: 924ms
memory: 60644kb
input:
180000
output:
108155689
result:
ok 1 number(s): "108155689"
Test #43:
score: 0
Accepted
time: 950ms
memory: 61276kb
input:
190000
output:
327542856
result:
ok 1 number(s): "327542856"
Test #44:
score: 0
Accepted
time: 1050ms
memory: 62656kb
input:
200000
output:
236144151
result:
ok 1 number(s): "236144151"
Test #45:
score: 0
Accepted
time: 1043ms
memory: 62260kb
input:
198798
output:
16935264
result:
ok 1 number(s): "16935264"
Extra Test:
score: 0
Extra Test Passed