QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#723020#9434. Italian CuisinetelgsWA 0ms3848kbC++2318.2kb2024-11-07 20:56:492024-11-07 20:56:49

Judging History

你现在查看的是最新测评结果

  • [2024-11-07 20:56:49]
  • 评测
  • 测评结果:WA
  • 用时:0ms
  • 内存:3848kb
  • [2024-11-07 20:56:49]
  • 提交

answer

// #pragma GCC optimize(2)

#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<set>
#include<unordered_map>
#include<queue>
#include<iomanip>
#include<cmath>
#define IOS ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)

using namespace std;
using ll=long long;
using pii=pair<ll,ll>;
using ld=long double;

constexpr ll N=1e6+10,mod=1e8-3;
constexpr ld inf=1e18,eps=1e-5,INF=9e18,PI=3.1514926535;

ll n;

// using point_t=long long;
using point_t=long double;

// 点与向量
template<typename T> struct point{
    T x,y;
    bool operator==(const point &a) const{
        return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);
    }
    bool operator<(const point &a) const{
    if(abs(x-a.x)<=eps) return y<a.y-eps;
        return x<a.x-eps;
    }
    bool operator>(const point &a) const{
        return !(*this<a||*this==a);
    }
    point operator+(const point &a) const{
        return {x+a.x,y+a.y};
    }
    point operator-(const point &a) const{
        return {x-a.x,y-a.y};
    }
    point operator-() const{
        return {-x,-y};}
    point operator*(const T k) const{
        return {k*x,k*y};
    }
    point operator/(const T k) const{
        return {x/k,y/k};
    }
    // 点积
    T operator*(const point &a) const{return x*a.x+y*a.y;
    }
    // 叉积,注意优先级
    T operator^(const point &a) const{
        return x*a.y-y*a.x;
    }
    // to-left 测试
    int toleft(const point &a) const{
    const auto t=(*this)^a;
        return (t>eps)-(t<-eps);
    }
    // 向量长度的平方
    T len2() const{
        return (*this)*(*this);
    }
    // 两点距离的平方
    T dis2(const point &a) const{
        return (a-(*this)).len2();
    }
    // 涉及浮点数
    // 向量长度
    long double len() const{
        return sqrtl(len2());
    }
    // 两点距离
    long double dis(const point &a) const{
        return sqrtl(dis2(a));
    }
    // 向量夹角
    long double ang(const point &a) const{
        return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));
    }
    // 逆时针旋转(给定角度)
    point rot(const long double rad) const{
        return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};
    }
    // 逆时针旋转(给定角度的正弦与余弦)
    point rot(const long double cosr,const long double sinr) const{
        return {x*cosr-y*sinr,x*sinr+y*cosr};
    }
};
using Point=point<point_t>;
// 极角排序
struct argcmp{
    bool operator()(const Point &a,const Point &b) const{
        const auto quad=[](const Point &a){
            if (a.y<-eps) return 1;
            if (a.y>eps) return 4;if (a.x<-eps) return 5;
            if (a.x>eps) return 3;
            return 2;
        };
        const int qa=quad(a),qb=quad(b);
        if (qa!=qb) return qa<qb;
        const auto t=a^b;
        // if (abs(t)<=eps) return a*a<b*b-eps;
        // 不同长度的向量需要分开
        return t>eps;
    }
};

// 直线
template<typename T> struct line{
    point<T> p,v;
    // p 为直线上一点,v 为方向向量
    bool operator==(const line &a) const{
        return v.toleft(a.v)==0&&v.toleft(p-a.p)==0;
    }
    // to-left 测试
    int toleft(const point<T> &a) const{
        return v.toleft(a-p);
    }
    // 半平面交算法定义的排序
    bool operator<(const line &a) const{
    if (abs(v^a.v)<=eps&&v*a.v>=-eps) return toleft(a.p)==-1;
        return argcmp()(v,a.v);
    }
    // 涉及浮点数
    // 直线交点
    point<T> inter(const line &a) const{
        return p+v*((a.v^(p-a.p))/(v^a.v));
    }
    // 点到直线距离
    long double dis(const point<T> &a) const{
        return abs(v^(a-p))/v.len();
    }
    // 点在直线上的投影
    point<T> proj(const point<T> &a) const{
        return p+v*((v*(a-p))/(v*v));
    }
};
using Line=line<point_t>;

//线段
template<typename T> struct segment{
    point<T> a,b;
    bool operator<(const segment &s) const{
        return make_pair(a,b)<make_pair(s.a,s.b);
    }
    // 判定性函数建议在整数域使用// 判断点是否在线段上
    // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
    int is_on(const point<T> &p) const{
    if (p==a||p==b) return -1;
        return (p-a).toleft(p-b)==0&&(p-a)*(p-b)<-eps;
    }
    // 判断线段直线是否相交
    // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
    int is_inter(const line<T> &l) const{
    if (l.toleft(a)==0||l.toleft(b)==0) return -1;
        return l.toleft(a)!=l.toleft(b);
    }
    // 判断两线段是否相交
    // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
    int is_inter(const segment<T> &s)const{
    if (is_on(s.a)||is_on(s.b)||s.is_on(a)||s.is_on(b)) return -1;
        const line<T> l={a,b-a},ls={s.a,s.b-s.a};
        return l.toleft(s.a)*l.toleft(s.b)==-1&&ls.toleft(a)*ls.toleft(b)==-1;
    }
    // 点到线段距离
    long double dis(const point<T> &p) const{
    if((p-a)*(b-a)<-eps||(p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
        const line<T> l={a,b-a};
        return l.dis(p);
    }
    // 两线段间距离
    long double dis(const segment<T> &s) const{
    if(is_inter(s)) return 0;
        return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
    }
};
using Segment=segment<point_t>;

// 圆
struct Circle{
    Point c;
    long double r;
    bool operator==(const Circle &a) const{
        return c==a.c && abs(r-a.r)<=eps;
    }
    // 周长
    long double circ() const{
        return 2*PI*r;
    }
    // 面积
    long double area() const{
        return PI*r*r;
    }
    // 点与圆的关系
    // -1 圆上 | 0 圆外 | 1 圆内
    int is_in(const Point &p) const{
        const long double d=p.dis(c);
        return abs(d-r)<=eps?-1:d<r-eps;
    }
    // 直线与圆关系
    // 0 相离 | 1 相切 | 2 相交
    int relation(const Line &l) const{
        const long double d=l.dis(c);
        if(d>r+eps) return 0;
        if(abs(d-r)<=eps) return 1;
        return 2;
    }
    // 圆与圆关系
    // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
    int relation(const Circle &a) const{
        if(*this==a) return -1;
        const long double d=c.dis(a.c);
        if(d>r+a.r+eps) return 0;
        if(abs(d-r-a.r)<=eps) return 1;
        if(abs(d-abs(r-a.r))<=eps) return 3;
        if(d<abs(r-a.r)-eps) return 4;
        return 2;
    }
    // 直线与圆的交点
    vector<Point> inter(const Line &l) const{
        const long double d=l.dis(c);
        const Point p=l.proj(c);
        const int t=relation(l);
        if (t==0) return vector<Point>();
        if (t==1) return vector<Point>{p};
        const long double k=sqrt(r*r-d*d);
        return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
    }
    // 圆与圆交点
    vector<Point> inter(const Circle &a) const{
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if (t==-1||t==0||t==4) return vector<Point>();
        Point e=a.c-c; e=e/e.len()*r;
        if (t==1||t==3){
            if(r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
            return vector<Point>{c-e};
        }
        const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-
        costh*costh);
        return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
    }
    // 圆与圆交面积
    long double inter_area(const Circle &a) const{
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if(t==-1) return area();
        if(t<2) return 0;
        if(t>2) return min(area(),a.area());
        const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d),costh2=(a.r*a.r+d*d-
        r*r)/(2*a.r*d);
        const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-
        costh2*costh2);
        const long double th1=acos(costh1),th2=acos(costh2);
        return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
    }
    // 过圆外一点圆的切线
    vector<Line> tangent(const Point &a) const{
        const int t=is_in(a);
        if(t==1) return vector<Line>();
        if(t==-1){
            const Point v={-(a-c).y,(a-c).x};
            return vector<Line>{{a,v}};
        }
        Point e=a-c; e=e/e.len()*r;
        const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
        return vector<Line>{{a,t1-a},{a,t2-a}};
    }
    // 两圆的公切线
    vector<Line> tangent(const Circle &a) const{
        const int t=relation(a);
        vector<Line> lines;
        if(t==-1||t==4) return lines;
        if(t==1||t==3){
            const Point p=inter(a)[0],v={-(a.c-c).y,(a.c-c).x};
            lines.push_back({p,v});
        }
        const long double d=c.dis(a.c);
        const Point e=(a.c-c)/(a.c-c).len();
        if (t<=2){
            const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        if (t==0){
            const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        return lines;
    }
    // 圆的反演
    tuple<int,Circle,Line> inverse(const Line &l) const{
        const Circle null_c={{0.0,0.0},0.0};
        const Line null_l={{0.0,0.0},{0.0,0.0}};
        if (l.toleft(c)==0) return {2,null_c,l};
        const Point v=l.toleft(c)==1?Point{l.v.y,-l.v.x}:Point{-l.v.y,l.v.x};
        const long double d=r*r/l.dis(c);
        const Point p=c+v/v.len()*d;
        return {1,{(c+p)/2,d/2},null_l};
    }
    tuple<int,Circle,Line> inverse(const Circle &a) const{
        const Circle null_c={{0.0,0.0},0.0};
        const Line null_l={{0.0,0.0},{0.0,0.0}};
        const Point v=a.c-c;
        if (a.is_in(c)==-1){
            const long double d=r*r/(a.r+a.r);
            const Point p=c+v/v.len()*d;
            return {2,null_c,{p,{-v.y,v.x}}};
        }
        if (c==a.c) return {1,{c,r*r/a.r},null_l};
        const long double d1=r*r/(c.dis(a.c)-a.r),d2=r*r/(c.dis(a.c)+a.r);
        const Point p=c+v/v.len()*d1,q=c+v/v.len()*d2;
        return {1,{(p+q)/2,p.dis(q)/2},null_l};
    }
};

// 多边形
template<typename T> struct polygon{
    vector<point<T>> p;
    // 以逆时针顺序存储
    size_t nxt(const size_t i) const{
        return i==p.size()-1?0:i+1;
    }
    size_t pre(const size_t i) const{
        return i==0?p.size()-1:i-1;
    }
    // 回转数
    // 返回值第一项表示点是否在多边形边上
    // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
    pair<bool,int> winding(const point<T> &a) const{
        int cnt=0;
        for(size_t i=0;i<p.size();i++){
            const point<T> u=p[i],v=p[nxt(i)];
            if(abs((a-u)^(a-v))<=eps && (a-u)*(a-v)<=eps) return {true,0};
            if(abs(u.y-v.y)<=eps) continue;
            const Line uv={u,v-u};
            if(u.y<v.y-eps&&uv.toleft(a)<=0) continue;if(u.y>v.y+eps&&uv.toleft(a)>=0) continue;
            if(u.y<a.y-eps&&v.y>=a.y-eps) cnt++;
            if(u.y>=a.y-eps&&v.y<a.y-eps) cnt--;
        }
        return {false,cnt};
    }
    // 多边形面积的两倍
    // 可用于判断点的存储顺序是顺时针或逆时针
    T area() const{
        T sum=0;
        for(size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];
        return sum;
    }
    // 多边形的周长
    long double circ() const{
        long double sum=0;
        for(size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]);
        return sum;
    }
};
using Polygon=polygon<point_t>;

//凸多边形
template<typename T> struct convex:polygon<T>{
    // 闵可夫斯基和
    convex operator+(const convex &c) const{
        const auto &p=this->p;
        vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
        vector<point<T>> res;
        res.reserve(p.size()+c.p.size());
        const auto cmp=[](const Segment &u,const Segment &v){
            return argcmp()(u.b-u.a,v.b-v.a);
        };
        for(size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]};
        for(size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]};
        rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
        rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
        merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
        const auto check=[](const vector<point<T>> &res,const point<T> &u){
            const auto back1=res.back(),back2=*prev(res.end(),2);
            return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
        };
        auto u=e1[0].a+e2[0].a;
        for(const auto &v:edge){
            while(res.size()>1&&check(res,u)) res.pop_back();
            res.push_back(u);
            u=u+v.b-v.a;
        }
        if(res.size()>1&&check(res,res[0])) res.pop_back();
        return {res};
    }
    // 旋转卡壳// 例:凸多边形的直径的平方
    T rotcaliper() const{
        const auto &p=this->p;
        if(p.size()==1) return 0;
        if(p.size()==2) return p[0].dis2(p[1]);
        const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w)
        {return (w-u)^(w-v);};
        T ans=0;
        for(size_t i=0,j=1;i<p.size();i++){
            const auto nxti=this->nxt(i);
            ans=max({ans,p[j].dis2(p[i]),p[j].dis2(p[nxti])});
            while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti])){
                j=this->nxt(j);
                ans=max({ans,p[j].dis2(p[i]),p[j].dis2(p[nxti])});
            }
        }
        return ans;
    }
    // 判断点是否在凸多边形内
    // 复杂度 O(logn)
    // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
    int is_in(const point<T> &a) const{
        const auto &p=this->p;
        if(p.size()==1) return a==p[0]?-1:0;
        if(p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0;
        if(a==p[0]) return -1;
        if((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1)
        return 0;
        const auto cmp=[&](const point<T> &u,const point<T> &v){
            return (u-p[0]).toleft(v-p[0])==1;
        };
        const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
        if(i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
        if(i==p.size()-1&&segment<T>{p[0],p[i]}.is_on(a)) return -1;
        if(segment<T>{p[i-1],p[i]}.is_on(a)) return -1;
        return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
    }
    // 凸多边形关于某一方向的极点
    // 复杂度 O(logn)
    // 参考资料:https://codeforces.com/blog/entry/48868
    template<typename F> size_t extreme(const F &dir) const{
        const auto &p=this->p;
        const auto check=[&](const size_t i){
        return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;
    };
    const auto dir0=dir(p[0]);
    const auto check0=check(0);
    if(!check0&&check(p.size()-1)) return 0;
        const auto cmp=[&](const point<T> &v){
            const size_t vi=&v-p.data();
            if (vi==0) return 1;
            const auto checkv=check(vi);
            const auto t=dir0.toleft(v-p[0]);
            if (vi==1 && checkv==check0 && t==0) return 1;
            return checkv^(checkv==check0&&t<=0);
        };
        return partition_point(p.begin(),p.end(),cmp)-p.begin();
    }
    // 过凸多边形外一点求凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    // 必须保证点在多边形外
    pair<size_t,size_t> tangent(const point<T> &a) const{
        const size_t i=extreme([&](const point<T> &u){return u-a;});
        const size_t j=extreme([&](const point<T> &u){return a-u;});
        return {i,j};
    }
    // 求平行于给定直线的凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    pair<size_t,size_t> tangent(const line<T> &a) const{
        const size_t i=extreme([&](...){return a.v;});
        const size_t j=extreme([&](...){return -a.v;});
        return {i,j};
    }
};
using Convex=convex<point_t>;

// 点集的凸包
// Andrew 算法,复杂度 O(nlogn)
Convex convexhull(vector<Point> p){
    vector<Point> st;
    if (p.empty()) return Convex{st};sort(p.begin(),p.end());
    const auto check=[](const vector<Point> &st,const Point &u){
        const auto back1=st.back(),back2=*prev(st.end(),2);
        return (back1-back2).toleft(u-back1)<=0;
    };
    for (const Point &u:p){
        while (st.size()>1 && check(st,u)) st.pop_back();
        st.push_back(u);
    }
    size_t k=st.size();
    p.pop_back();
    reverse(p.begin(),p.end());
    for (const Point &u:p){
        while (st.size()>k && check(st,u)) st.pop_back();
        st.push_back(u);
    }
    st.pop_back();
    return Convex{st};
}

void solve(){
    cin>>n;

    Point p;
    ld r;
    cin>>p.x>>p.y>>r;
    Circle cir={p,r};

    vector<Point> vec(n*2+10);
    for(int i=1;i<=n;i++){
        cin>>vec[i].x>>vec[i].y;
        vec[i+n]=vec[i];
    }

    queue<Point> q;
    Point last;
    ld res=0,ans=0;
    for(int i=1;i<=2*n;i++){
        while(q.size()<2) q.push(vec[i]),last=vec[i++];
        while(!q.empty()&&cir.relation({q.front(),vec[i]-q.front()})){
            auto t1=q.front();
            q.pop();
            auto t2=q.front();
            res-=((last-t2)^(t1-t2));
        }
        if(q.size()>=2){
            res+=((q.front()-vec[i])^(last-vec[i]));
        } 
        q.push(vec[i]);
        last=vec[i];
        ans=max(ans,res);
    }

    cout<<fixed<<setprecision(10)<<ans<<'\n';
}

int main(){
    IOS;
    int t=1;
    cin>>t;
    while(t--) solve();
    return 0;
}

/*
3
5
1 1 1
0 0
1 0
5 0
3 3
0 5
6
2 4 1
2 0
4 0
6 3
4 6
2 6
0 3
4
3 3 1
3 0
6 3
3 6
0 3

5
24
0
*/

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 3848kb

input:

3
5
1 1 1
0 0
1 0
5 0
3 3
0 5
6
2 4 1
2 0
4 0
6 3
4 6
2 6
0 3
4
3 3 1
3 0
6 3
3 6
0 3

output:

5.0000000000
24.0000000000
0.0000000000

result:

wrong output format Expected integer, but "5.0000000000" found