QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#639352#9458. TriangulationmaspyTL 169ms82488kbC++2033.4kb2024-10-13 19:07:232024-10-13 19:07:23

Judging History

你现在查看的是最新测评结果

  • [2024-10-13 19:07:23]
  • 评测
  • 测评结果:TL
  • 用时:169ms
  • 内存:82488kb
  • [2024-10-13 19:07:23]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 3 "main.cpp"

#line 2 "library/geo/base.hpp"
template <typename T>
struct Point {
  T x, y;

  Point() : x(0), y(0) {}

  template <typename A, typename B>
  Point(A x, B y) : x(x), y(y) {}

  template <typename A, typename B>
  Point(pair<A, B> p) : x(p.fi), y(p.se) {}

  Point operator+=(const Point p) {
    x += p.x, y += p.y;
    return *this;
  }
  Point operator-=(const Point p) {
    x -= p.x, y -= p.y;
    return *this;
  }
  Point operator+(Point p) const { return {x + p.x, y + p.y}; }
  Point operator-(Point p) const { return {x - p.x, y - p.y}; }
  bool operator==(Point p) const { return x == p.x && y == p.y; }
  bool operator!=(Point p) const { return x != p.x || y != p.y; }
  Point operator-() const { return {-x, -y}; }
  Point operator*(T t) const { return {x * t, y * t}; }
  Point operator/(T t) const { return {x / t, y / t}; }

  bool operator<(Point p) const {
    if (x != p.x) return x < p.x;
    return y < p.y;
  }
  T dot(Point other) { return x * other.x + y * other.y; }
  T det(Point other) { return x * other.y - y * other.x; }

  double norm() { return sqrtl(x * x + y * y); }
  double angle() { return atan2(y, x); }

  Point rotate(double theta) {
    static_assert(!is_integral<T>::value);
    double c = cos(theta), s = sin(theta);
    return Point{c * x - s * y, s * x + c * y};
  }
};

#ifdef FASTIO
template <typename T>
void rd(Point<T> &p) {
  fastio::rd(p.x), fastio::rd(p.y);
}
template <typename T>
void wt(Point<T> &p) {
  fastio::wt(p.x);
  fastio::wt(' ');
  fastio::wt(p.y);
}
#endif

// A -> B -> C と進むときに、左に曲がるならば +1、右に曲がるならば -1
template <typename T>
int ccw(Point<T> A, Point<T> B, Point<T> C) {
  T x = (B - A).det(C - A);
  if (x > 0) return 1;
  if (x < 0) return -1;
  return 0;
}

template <typename REAL, typename T, typename U>
REAL dist(Point<T> A, Point<U> B) {
  REAL dx = REAL(A.x) - REAL(B.x);
  REAL dy = REAL(A.y) - REAL(B.y);
  return sqrt(dx * dx + dy * dy);
}

// ax+by+c
template <typename T>
struct Line {
  T a, b, c;

  Line(T a, T b, T c) : a(a), b(b), c(c) {}
  Line(Point<T> A, Point<T> B) { a = A.y - B.y, b = B.x - A.x, c = A.x * B.y - A.y * B.x; }
  Line(T x1, T y1, T x2, T y2) : Line(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  template <typename U>
  U eval(Point<U> P) {
    return a * P.x + b * P.y + c;
  }

  template <typename U>
  T eval(U x, U y) {
    return a * x + b * y + c;
  }

  // 同じ直線が同じ a,b,c で表現されるようにする
  void normalize() {
    static_assert(is_same_v<T, int> || is_same_v<T, long long>);
    T g = gcd(gcd(abs(a), abs(b)), abs(c));
    a /= g, b /= g, c /= g;
    if (b < 0) { a = -a, b = -b, c = -c; }
    if (b == 0 && a < 0) { a = -a, b = -b, c = -c; }
  }

  bool is_parallel(Line other) { return a * other.b - b * other.a == 0; }
  bool is_orthogonal(Line other) { return a * other.a + b * other.b == 0; }
};

template <typename T>
struct Segment {
  Point<T> A, B;

  Segment(Point<T> A, Point<T> B) : A(A), B(B) {}
  Segment(T x1, T y1, T x2, T y2) : Segment(Point<T>(x1, y1), Point<T>(x2, y2)) {}

  bool contain(Point<T> C) {
    T det = (C - A).det(B - A);
    if (det != 0) return 0;
    return (C - A).dot(B - A) >= 0 && (C - B).dot(A - B) >= 0;
  }

  Line<T> to_Line() { return Line(A, B); }
};

template <typename REAL>
struct Circle {
  Point<REAL> O;
  REAL r;
  Circle(Point<REAL> O, REAL r) : O(O), r(r) {}
  Circle(REAL x, REAL y, REAL r) : O(x, y), r(r) {}
  template <typename T>
  bool contain(Point<T> p) {
    REAL dx = p.x - O.x, dy = p.y - O.y;
    return dx * dx + dy * dy <= r * r;
  }
};
#line 2 "library/geo/convex_hull.hpp"

#line 4 "library/geo/convex_hull.hpp"

// allow_180=true で同一座標点があるとこわれる
// full なら I[0] が sorted で min になる
template <typename T, bool allow_180 = false>
vector<int> ConvexHull(vector<Point<T>>& XY, string mode = "full", bool sorted = false) {
  assert(mode == "full" || mode == "lower" || mode == "upper");
  ll N = XY.size();
  if (N == 1) return {0};
  if (N == 2) {
    if (XY[0] < XY[1]) return {0, 1};
    if (XY[1] < XY[0]) return {1, 0};
    return {0};
  }
  vc<int> I(N);
  if (sorted) {
    FOR(i, N) I[i] = i;
  } else {
    I = argsort(XY);
  }
  if constexpr (allow_180) { FOR(i, N - 1) assert(XY[i] != XY[i + 1]); }

  auto check = [&](ll i, ll j, ll k) -> bool {
    T det = (XY[j] - XY[i]).det(XY[k] - XY[i]);
    if constexpr (allow_180) return det >= 0;
    return det > T(0);
  };

  auto calc = [&]() {
    vector<int> P;
    for (auto&& k: I) {
      while (P.size() > 1) {
        auto i = P[P.size() - 2];
        auto j = P[P.size() - 1];
        if (check(i, j, k)) break;
        P.pop_back();
      }
      P.eb(k);
    }
    return P;
  };

  vc<int> P;
  if (mode == "full" || mode == "lower") {
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "full" || mode == "upper") {
    if (!P.empty()) P.pop_back();
    reverse(all(I));
    vc<int> Q = calc();
    P.insert(P.end(), all(Q));
  }
  if (mode == "upper") reverse(all(P));
  while (len(P) >= 2 && XY[P[0]] == XY[P.back()]) P.pop_back();
  return P;
}
#line 1 "library/geo/count_points_in_triangles.hpp"

#line 2 "library/geo/angle_sort.hpp"

#line 4 "library/geo/angle_sort.hpp"

// lower: -1, origin: 0, upper: 1
template <typename T>
int lower_or_upper(Point<T>& p) {
  if (p.y != 0) return (p.y > 0 ? 1 : -1);
  if (p.x > 0) return -1;
  if (p.x < 0) return 1;
  return 0;
}

// -1, 0, 1
template <typename T>
int angle_comp_3(Point<T>& L, Point<T>& R) {
  int a = lower_or_upper(L), b = lower_or_upper(R);
  if (a != b) return (a < b ? -1 : +1);
  T det = L.det(R);
  if (det > 0) return -1;
  if (det < 0) return 1;
  return 0;
}
// 偏角ソートに対する argsort
template <typename T>
vector<int> angle_sort(vector<Point<T>>& P) {
  vc<int> I(len(P));
  FOR(i, len(P)) I[i] = i;
  sort(all(I), [&](auto& L, auto& R) -> bool { return angle_comp_3(P[L], P[R]) == -1; });
  return I;
}

// 偏角ソートに対する argsort
template <typename T>
vector<int> angle_sort(vector<pair<T, T>>& P) {
  vc<Point<T>> tmp(len(P));
  FOR(i, len(P)) tmp[i] = Point<T>(P[i]);
  return angle_sort<T>(tmp);
}
#line 2 "library/random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(chrono::high_resolution_clock::now().time_since_epoch()).count()) * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/ds/fenwicktree/fenwicktree_01.hpp"

#line 2 "library/alg/monoid/add.hpp"

template <typename E>
struct Monoid_Add {
  using X = E;
  using value_type = X;
  static constexpr X op(const X &x, const X &y) noexcept { return x + y; }
  static constexpr X inverse(const X &x) noexcept { return -x; }
  static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }
  static constexpr X unit() { return X(0); }
  static constexpr bool commute = true;
};
#line 3 "library/ds/fenwicktree/fenwicktree.hpp"

template <typename Monoid>
struct FenwickTree {
  using G = Monoid;
  using MX = Monoid;
  using E = typename G::value_type;
  int n;
  vector<E> dat;
  E total;

  FenwickTree() {}
  FenwickTree(int n) { build(n); }
  template <typename F>
  FenwickTree(int n, F f) {
    build(n, f);
  }
  FenwickTree(const vc<E>& v) { build(v); }

  void build(int m) {
    n = m;
    dat.assign(m, G::unit());
    total = G::unit();
  }
  void build(const vc<E>& v) {
    build(len(v), [&](int i) -> E { return v[i]; });
  }
  template <typename F>
  void build(int m, F f) {
    n = m;
    dat.clear();
    dat.reserve(n);
    total = G::unit();
    FOR(i, n) { dat.eb(f(i)); }
    for (int i = 1; i <= n; ++i) {
      int j = i + (i & -i);
      if (j <= n) dat[j - 1] = G::op(dat[i - 1], dat[j - 1]);
    }
    total = prefix_sum(m);
  }

  E prod_all() { return total; }
  E sum_all() { return total; }
  E sum(int k) { return prefix_sum(k); }
  E prod(int k) { return prefix_prod(k); }
  E prefix_sum(int k) { return prefix_prod(k); }
  E prefix_prod(int k) {
    chmin(k, n);
    E ret = G::unit();
    for (; k > 0; k -= k & -k) ret = G::op(ret, dat[k - 1]);
    return ret;
  }
  E sum(int L, int R) { return prod(L, R); }
  E prod(int L, int R) {
    chmax(L, 0), chmin(R, n);
    if (L == 0) return prefix_prod(R);
    assert(0 <= L && L <= R && R <= n);
    E pos = G::unit(), neg = G::unit();
    while (L < R) { pos = G::op(pos, dat[R - 1]), R -= R & -R; }
    while (R < L) { neg = G::op(neg, dat[L - 1]), L -= L & -L; }
    return G::op(pos, G::inverse(neg));
  }

  vc<E> get_all() {
    vc<E> res(n);
    FOR(i, n) res[i] = prod(i, i + 1);
    return res;
  }

  void add(int k, E x) { multiply(k, x); }
  void multiply(int k, E x) {
    static_assert(G::commute);
    total = G::op(total, x);
    for (++k; k <= n; k += k & -k) dat[k - 1] = G::op(dat[k - 1], x);
  }

  template <class F>
  int max_right(const F check, int L = 0) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  // check(i, x)
  template <class F>
  int max_right_with_index(const F check, int L = 0) {
    assert(check(L, G::unit()));
    E s = G::unit();
    int i = L;
    // 2^k 進むとダメ
    int k = [&]() {
      while (1) {
        if (i % 2 == 1) { s = G::op(s, G::inverse(dat[i - 1])), i -= 1; }
        if (i == 0) { return topbit(n) + 1; }
        int k = lowbit(i) - 1;
        if (i + (1 << k) > n) return k;
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (!check(i + (1 << k), t)) { return k; }
        s = G::op(s, G::inverse(dat[i - 1])), i -= i & -i;
      }
    }();
    while (k) {
      --k;
      if (i + (1 << k) - 1 < len(dat)) {
        E t = G::op(s, dat[i + (1 << k) - 1]);
        if (check(i + (1 << k), t)) { i += (1 << k), s = t; }
      }
    }
    return i;
  }

  template <class F>
  int min_left(const F check, int R) {
    assert(check(G::unit()));
    E s = G::unit();
    int i = R;
    // false になるところまで戻る
    int k = 0;
    while (i > 0 && check(s)) {
      s = G::op(s, dat[i - 1]);
      k = lowbit(i);
      i -= i & -i;
    }
    if (check(s)) {
      assert(i == 0);
      return 0;
    }
    // 2^k 進むと ok になる
    // false を維持して進む
    while (k) {
      --k;
      E t = G::op(s, G::inverse(dat[i + (1 << k) - 1]));
      if (!check(t)) { i += (1 << k), s = t; }
    }
    return i + 1;
  }

  int kth(E k, int L = 0) {
    return max_right([&k](E x) -> bool { return x <= k; }, L);
  }
};
#line 4 "library/ds/fenwicktree/fenwicktree_01.hpp"

struct FenwickTree_01 {
  int N, n;
  vc<u64> dat;
  FenwickTree<Monoid_Add<int>> bit;
  FenwickTree_01() {}
  FenwickTree_01(int n) { build(n); }
  template <typename F>
  FenwickTree_01(int n, F f) {
    build(n, f);
  }

  void build(int m) {
    N = m;
    n = ceil<int>(N + 1, 64);
    dat.assign(n, u64(0));
    bit.build(n);
  }

  template <typename F>
  void build(int m, F f) {
    N = m;
    n = ceil<int>(N + 1, 64);
    dat.assign(n, u64(0));
    FOR(i, N) { dat[i / 64] |= u64(f(i)) << (i % 64); }
    bit.build(n, [&](int i) -> int { return popcnt(dat[i]); });
  }

  int sum_all() { return bit.sum_all(); }
  int sum(int k) { return prefix_sum(k); }
  int prefix_sum(int k) {
    int ans = bit.sum(k / 64);
    ans += popcnt(dat[k / 64] & ((u64(1) << (k % 64)) - 1));
    return ans;
  }
  int sum(int L, int R) {
    if (L == 0) return prefix_sum(R);
    int ans = 0;
    ans -= popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
    ans += popcnt(dat[R / 64] & ((u64(1) << (R % 64)) - 1));
    ans += bit.sum(L / 64, R / 64);
    return ans;
  }

  void add(int k, int x) {
    if (x == 1) add(k);
    if (x == -1) remove(k);
  }

  void add(int k) {
    dat[k / 64] |= u64(1) << (k % 64);
    bit.add(k / 64, 1);
  }
  void remove(int k) {
    dat[k / 64] &= ~(u64(1) << (k % 64));
    bit.add(k / 64, -1);
  }

  int kth(int k, int L = 0) {
    if (k >= sum_all()) return N;
    k += popcnt(dat[L / 64] & ((u64(1) << (L % 64)) - 1));
    L /= 64;
    int mid = 0;
    auto check = [&](auto e) -> bool {
      if (e <= k) chmax(mid, e);
      return e <= k;
    };
    int idx = bit.max_right(check, L);
    if (idx == n) return N;
    k -= mid;
    u64 x = dat[idx];
    int p = popcnt(x);
    if (p <= k) return N;
    k = binary_search([&](int n) -> bool { return (p - popcnt(x >> n)) <= k; },
                      0, 64, 0);
    return 64 * idx + k;
  }

  int next(int k) {
    int idx = k / 64;
    k %= 64;
    u64 x = dat[idx] & ~((u64(1) << k) - 1);
    if (x) return 64 * idx + lowbit(x);
    idx = bit.kth(0, idx + 1);
    if (idx == n || !dat[idx]) return N;
    return 64 * idx + lowbit(dat[idx]);
  }

  int prev(int k) {
    if (k == N) --k;
    int idx = k / 64;
    k %= 64;
    u64 x = dat[idx];
    if (k < 63) x &= (u64(1) << (k + 1)) - 1;
    if (x) return 64 * idx + topbit(x);
    idx = bit.min_left([&](auto e) -> bool { return e <= 0; }, idx) - 1;
    if (idx == -1) return -1;
    return 64 * idx + topbit(dat[idx]);
  }
};
#line 6 "library/geo/count_points_in_triangles.hpp"

// 点群 A, B を入力 (Point<ll>)
// query(i,j,k):三角形 AiAjAk 内部の Bl の個数(非負)を返す
// 前計算 O(NMlogM)、クエリ O(1)
// https://codeforces.com/contest/13/problem/D
// https://codeforces.com/contest/852/problem/H
struct Count_Points_In_Triangles {
  using P = Point<ll>;
  const int LIM = 1'000'000'000 + 10;
  vc<P> A, B;
  vc<int> new_idx; // O から見た偏角ソート順を管理
  vc<int> point;   // A[i] と一致する B[j] の数え上げ
  vvc<int> seg;    // 線分 A[i]A[j] 内にある B[k] の数え上げ
  vvc<int> tri;    // OA[i]A[j] 内部にある B[k] の数え上げ
  Count_Points_In_Triangles(const vc<P>& A, const vc<P>& B) : A(A), B(B) {
    for (auto&& p: A) assert(max(abs(p.x), abs(p.y)) < LIM);
    for (auto&& p: B) assert(max(abs(p.x), abs(p.y)) < LIM);
    build();
  }

  int count3(int i, int j, int k) {
    i = new_idx[i], j = new_idx[j], k = new_idx[k];
    if (i > j) swap(i, j);
    if (j > k) swap(j, k);
    if (i > j) swap(i, j);
    assert(i <= j && j <= k);
    ll d = (A[j] - A[i]).det(A[k] - A[i]);
    if (d == 0) return 0;
    if (d > 0) { return tri[i][j] + tri[j][k] - tri[i][k] - seg[i][k]; }
    int x = tri[i][k] - tri[i][j] - tri[j][k];
    return x - seg[i][j] - seg[j][k] - point[j];
  }

  // segment
  int count2(int i, int j) {
    i = new_idx[i], j = new_idx[j];
    if (i > j) swap(i, j);
    return seg[i][j];
  }

private:
  P take_origin() {
    // OAiAj, OAiBj が同一直線上にならないようにする
    // fail prob: at most N(N+M)/LIM
    return P{-LIM, RNG(-LIM, LIM)};
  }

  void build() {
    P O = take_origin();
    for (auto&& p: A) p = p - O;
    for (auto&& p: B) p = p - O;
    int N = len(A), M = len(B);
    vc<int> I = angle_sort(A);
    A = rearrange(A, I);
    new_idx.resize(N);
    FOR(i, N) new_idx[I[i]] = i;

    I = angle_sort(B);
    B = rearrange(B, I);

    point.assign(N, 0);
    seg.assign(N, vc<int>(N));
    tri.assign(N, vc<int>(N));

    // point
    FOR(i, N) FOR(j, M) if (A[i] == B[j])++ point[i];

    int m = 0;
    FOR(j, N) {
      // OA[i]A[j], B[k]
      while (m < M && A[j].det(B[m]) < 0) ++m;
      vc<P> C(m);
      FOR(k, m) C[k] = B[k] - A[j];
      vc<int> I(m);
      FOR(i, m) I[i] = i;
      sort(all(I), [&](auto& a, auto& b) -> bool { return C[a].det(C[b]) > 0; });
      C = rearrange(C, I);
      vc<int> rk(m);
      FOR(k, m) rk[I[k]] = k;
      FenwickTree_01 bit(m);

      int k = m;
      FOR_R(i, j) {
        while (k > 0 && A[i].det(B[k - 1]) > 0) { bit.add(rk[--k], 1); }
        P p = A[i] - A[j];
        int lb = binary_search([&](int n) -> bool { return (n == 0 ? true : C[n - 1].det(p) > 0); }, 0, m + 1);
        int ub = binary_search([&](int n) -> bool { return (n == 0 ? true : C[n - 1].det(p) >= 0); }, 0, m + 1);
        seg[i][j] += bit.sum(lb, ub), tri[i][j] += bit.sum(lb);
      }
    }
  }
};
#line 7 "main.cpp"

using P = Point<ll>;

pair<ll, int> dp[1 << 18][19];
int W[19][19];
int sgn[19][19][19];

using T = pair<ll, int>;

#define cnt first
#define mi second

void solve() {
  LL(N);
  VEC(P, A, N);

  {
    VV(int, W1, N, N);
    auto I = argsort(A);
    vv(int, W2, N, N);
    FOR(i, N) FOR(j, N) W2[i][j] = W1[I[i]][I[j]];
    swap(W1, W2);
    A = rearrange(A, I);
    FOR(i, N) FOR(j, N) W[i][j] = W1[i][j];
  }

  vc<ll> AREA(1 << (N - 2));
  FOR(ss, 1 << (N - 2)) {
    int s = 1 | (ss << 1) | (1 << (N - 1));
    int i = 0;
    FOR(j, 1, N) {
      if (s >> j & 1) {
        AREA[ss] += (A[i].y + A[j].y) * (A[j].x - A[i].x);
        i = j;
      }
    }
  }
  auto V = argsort(AREA);
  for (auto& ss: V) ss = 1 | (ss << 1) | (1 << (N - 1));

  // Graph<int, 1> G(1 << N);
  // FOR(s, 1 << N) {
  //   if (!(s & 1)) continue;
  //   if (!(s >> (N - 1)) & 1) continue;
  //   vc<int> I;
  //   FOR(i, N) if (s >> i & 1) I.eb(i);
  //   // 追加するパターン
  //   FOR(p, len(I) - 1) {
  //     int i = I[p], j = I[p + 1];
  //     FOR(k, i, j) {
  //       if (ccw(A[i], A[j], A[k]) != 1) continue;
  //       if (CT.count3(i, j, k) > 0) continue;
  //       G.add(s, s ^ 1 << k);
  //     }
  //   }
  //   // 削除するパターン
  //   FOR(p, len(I) - 2) {
  //     int i = I[p], j = I[p + 1], k = I[p + 2];
  //     if (ccw(A[i], A[j], A[k]) != 1) continue;
  //     if (CT.count3(i, j, k) > 0) continue;
  //     G.add(s, s ^ 1 << j);
  //   }
  // }
  // G.build();
  // return;

  Count_Points_In_Triangles CT(A, A);

  FOR(k, N) FOR(j, k) FOR(i, j) {
    sgn[i][j][k] = ((A[j] - A[i]).det(A[k] - A[i]) > 0 ? 1 : -1);
    if (CT.count3(i, j, k) > 0) sgn[i][j][k] = 0;
  }

  auto I = ConvexHull<ll, true>(A, "lower");
  int init = 0;
  for (auto& i: I) init |= 1 << i;
  int init_w = 0;
  FOR(k, len(I) - 1) init_w += W[I[k]][I[k + 1]];

  // vv(T, dp, 1 << N, N);
  FOR(s, 1 << N) FOR(v, N) dp[s][v] = {0, infty<int>};
  auto upd = [&](T& a, const T& b) -> void {
    if (chmin(a.mi, b.mi)) a.cnt = 0;
    if (a.mi == b.mi) a.cnt += b.cnt;
  };
  upd(dp[init][0], {1, init_w});

  auto prev = [&](int s, int i) -> int { return topbit(s & ((1 << (i + 1)) - 1)); };
  auto nxt = [&](int s, int i) -> int { return lowbit(s & (~((1 << i) - 1))); };

  for (auto& s: V) {
    assert(s & 1);
    assert(s >> (N - 1) & 1);
    T t = {0, infty<int>};
    FOR(p, N) {
      upd(t, dp[s][p]);
      if (t.cnt == 0) continue;
      // 追加するパターン
      int i = p;
      if (i < N - 1 && (s >> i & 1)) {
        int j = nxt(s, i + 1);
        FOR(k, i + 1, j) {
          if (sgn[i][k][j] != -1) continue;
          upd(dp[s ^ 1 << k][i], {t.cnt, t.mi + W[i][k] + W[k][j]});
        }
      }
      // 削除するパターン
      int j = p;
      if (0 < j && j < N - 1 && (s >> j & 1)) {
        int i = prev(s, j - 1), k = nxt(s, j + 1);
        if (sgn[i][j][k] != 1) continue;
        upd(dp[s ^ 1 << j][i], {t.cnt, t.mi + W[i][k]});
      }
    }
  }
  assert(!V.empty());
  int top = 0;
  I = ConvexHull<ll, true>(A, "upper");
  for (auto& i: I) top |= 1 << i;

  T ANS = {0, infty<int>};
  FOR(i, N) upd(ANS, dp[top][i]);
  print(ANS.mi, ANS.cnt);
  // print(ANS.cnt);
}

signed main() {
  INT(T);
  FOR(T) solve();
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3748kb

input:

2
4
0 0
1 1
1 0
0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0
4
0 0
3 0
1 3
1 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

output:

5 2
6 1

result:

ok 2 lines

Test #2:

score: 0
Accepted
time: 169ms
memory: 82488kb

input:

68
3
454 364
117 336
271 84
0 6 2
6 0 10
2 10 0
4
454 364
117 336
271 84
274 296
0 3 2 10
3 0 6 4
2 6 0 5
10 4 5 0
4
603 817
230 695
230 303
604 183
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
5
454 364
117 336
271 84
274 296
220 225
0 1 7 3 2
1 0 4 4 2
7 4 0 1 5
3 4 1 0 0
2 2 5 0 0
5
666667 788675
333173 78858...

output:

18 1
30 1
0 2
27 1
38 2
35 5
54 1
44 2
18 14
69 1
12 1
88 42
59 1
23 8
180 150
80 1
23 2
0 780
30 12
504 4550
30 4
19656 26888
29 6
26700 168942
24 88
22770 1098904
21 28
30816 7281984
24 27
15327 49789428
24 4
16338 342305320
21 48
42615 2410168190
22 360
44928 17309628327
1240448 1
2613579 1
19532...

result:

ok 68 lines

Extra Test:

score: -3
Extra Test Failed : Time Limit Exceeded on 2

input:

70
18
523990 661228
542094 867454
715348 957693
724847 921955
185285 504782
340889 164109
548808 628313
528132 176875
403401 165509
733176 362440
62653 306280
841647 146408
169951 295342
186442 591918
405268 31651
207390 724432
622724 775650
495011 800641
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ...

output:


result: