QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#633826 | #9459. Tree Equation | ucup-team987# | AC ✓ | 613ms | 23652kb | C++23 | 23.3kb | 2024-10-12 16:16:28 | 2024-10-13 18:42:29 |
Judging History
answer
/**
* date : 2024-10-12 17:16:06
* author : Nyaan
*/
#define NDEBUG
using namespace std;
// intrinstic
#include <immintrin.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tr2/dynamic_bitset>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;
template <typename T>
using minpq = priority_queue<T, vector<T>, greater<T>>;
template <typename T, typename U>
struct P : pair<T, U> {
template <typename... Args>
constexpr P(Args... args) : pair<T, U>(args...) {}
using pair<T, U>::first;
using pair<T, U>::second;
P &operator+=(const P &r) {
first += r.first;
second += r.second;
return *this;
}
P &operator-=(const P &r) {
first -= r.first;
second -= r.second;
return *this;
}
P &operator*=(const P &r) {
first *= r.first;
second *= r.second;
return *this;
}
template <typename S>
P &operator*=(const S &r) {
first *= r, second *= r;
return *this;
}
P operator+(const P &r) const { return P(*this) += r; }
P operator-(const P &r) const { return P(*this) -= r; }
P operator*(const P &r) const { return P(*this) *= r; }
template <typename S>
P operator*(const S &r) const {
return P(*this) *= r;
}
P operator-() const { return P{-first, -second}; }
};
using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;
constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;
template <typename T>
int sz(const T &t) {
return t.size();
}
template <typename T, typename U>
inline bool amin(T &x, U y) {
return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
inline T Max(const vector<T> &v) {
return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
return accumulate(begin(v), end(v), 0LL);
}
template <typename T>
int lb(const vector<T> &v, const T &a) {
return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
return upper_bound(begin(v), end(v), a) - begin(v);
}
constexpr long long TEN(int n) {
long long ret = 1, x = 10;
for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
return ret;
}
template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
return make_pair(t, u);
}
template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
vector<T> ret(v.size() + 1);
if (rev) {
for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
} else {
for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
}
return ret;
};
template <typename T>
vector<T> mkuni(const vector<T> &v) {
vector<T> ret(v);
sort(ret.begin(), ret.end());
ret.erase(unique(ret.begin(), ret.end()), ret.end());
return ret;
}
template <typename F>
vector<int> mkord(int N, F f) {
vector<int> ord(N);
iota(begin(ord), end(ord), 0);
sort(begin(ord), end(ord), f);
return ord;
}
template <typename T>
vector<int> mkinv(vector<T> &v) {
int max_val = *max_element(begin(v), end(v));
vector<int> inv(max_val + 1, -1);
for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
return inv;
}
vector<int> mkiota(int n) {
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
return ret;
}
template <typename T>
T mkrev(const T &v) {
T w{v};
reverse(begin(w), end(w));
return w;
}
template <typename T>
bool nxp(T &v) {
return next_permutation(begin(v), end(v));
}
// 返り値の型は入力の T に依存
// i 要素目 : [0, a[i])
template <typename T>
vector<vector<T>> product(const vector<T> &a) {
vector<vector<T>> ret;
vector<T> v;
auto dfs = [&](auto rc, int i) -> void {
if (i == (int)a.size()) {
ret.push_back(v);
return;
}
for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();
};
dfs(dfs, 0);
return ret;
}
// F : function(void(T&)), mod を取る操作
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I, const function<void(T &)> &f) {
T res = I;
for (; n; f(a = a * a), n >>= 1) {
if (n & 1) f(res = res * a);
}
return res;
}
// T : 整数型のときはオーバーフローに注意する
template <typename T>
T Power(T a, long long n, const T &I = T{1}) {
return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});
}
template <typename T>
T Rev(const T &v) {
T res = v;
reverse(begin(res), end(res));
return res;
}
template <typename T>
vector<T> Transpose(const vector<T> &v) {
using U = typename T::value_type;
if(v.empty()) return {};
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
res[j][i] = v[i][j];
}
}
return res;
}
template <typename T>
vector<T> Rotate(const vector<T> &v, int clockwise = true) {
using U = typename T::value_type;
int H = v.size(), W = v[0].size();
vector res(W, T(H, U{}));
for (int i = 0; i < H; i++) {
for (int j = 0; j < W; j++) {
if (clockwise) {
res[W - 1 - j][i] = v[i][j];
} else {
res[j][H - 1 - i] = v[i][j];
}
}
}
return res;
}
} // namespace Nyaan
// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
return __builtin_popcountll(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
} // namespace Nyaan
// inout
namespace Nyaan {
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
os << p.first << " " << p.second;
return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
is >> p.first >> p.second;
return is;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
int s = (int)v.size();
for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &x : v) is >> x;
return is;
}
istream &operator>>(istream &is, __int128_t &x) {
string S;
is >> S;
x = 0;
int flag = 0;
for (auto &c : S) {
if (c == '-') {
flag = true;
continue;
}
x *= 10;
x += c - '0';
}
if (flag) x = -x;
return is;
}
istream &operator>>(istream &is, __uint128_t &x) {
string S;
is >> S;
x = 0;
for (auto &c : S) {
x *= 10;
x += c - '0';
}
return is;
}
ostream &operator<<(ostream &os, __int128_t x) {
if (x == 0) return os << 0;
if (x < 0) os << '-', x = -x;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
ostream &operator<<(ostream &os, __uint128_t x) {
if (x == 0) return os << 0;
string S;
while (x) S.push_back('0' + x % 10), x /= 10;
reverse(begin(S), end(S));
return os << S;
}
void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
cin >> t;
in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
cout << t;
if (sizeof...(u)) cout << sep;
out(u...);
}
struct IoSetupNya {
IoSetupNya() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(7);
}
} iosetupnya;
} // namespace Nyaan
// debug
#ifdef NyaanDebug
#define trc(...) (void(0))
#else
#define trc(...) (void(0))
#endif
#ifdef NyaanLocal
#define trc2(...) (void(0))
#else
#define trc2(...) (void(0))
#endif
// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...) \
int __VA_ARGS__; \
in(__VA_ARGS__)
#define inl(...) \
long long __VA_ARGS__; \
in(__VA_ARGS__)
#define ins(...) \
string __VA_ARGS__; \
in(__VA_ARGS__)
#define in2(s, t) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i]); \
}
#define in3(s, t, u) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i]); \
}
#define in4(s, t, u, v) \
for (int i = 0; i < (int)s.size(); i++) { \
in(s[i], t[i], u[i], v[i]); \
}
#define die(...) \
do { \
Nyaan::out(__VA_ARGS__); \
return; \
} while (0)
namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }
//
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph([[maybe_unused]] int N, int M, int is_weighted = true,
bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
/**
* @brief グラフテンプレート
* @docs docs/graph/graph-template.md
*/
// 一般のグラフのstからの距離!!!!
// unvisited nodes : d = -1
vector<int> Depth(const UnweightedGraph &g, int start = 0) {
int n = g.size();
vector<int> ds(n, -1);
ds[start] = 0;
queue<int> q;
q.push(start);
while (!q.empty()) {
int c = q.front();
q.pop();
int dc = ds[c];
for (auto &d : g[c]) {
if (ds[d] == -1) {
ds[d] = dc + 1;
q.push(d);
}
}
}
return ds;
}
// Depth of Rooted Weighted Tree
// unvisited nodes : d = -1
template <typename T>
vector<T> Depth(const WeightedGraph<T> &g, int start = 0) {
vector<T> d(g.size(), -1);
auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void {
d[cur] = val;
for (auto &dst : g[cur]) {
if (dst == par) continue;
rec(rec, dst, val + dst.cost, cur);
}
};
dfs(dfs, start, 0);
return d;
}
// Diameter of Tree
// return value : { {u, v}, length }
pair<pair<int, int>, int> Diameter(const UnweightedGraph &g) {
auto d = Depth(g, 0);
int u = max_element(begin(d), end(d)) - begin(d);
d = Depth(g, u);
int v = max_element(begin(d), end(d)) - begin(d);
return make_pair(make_pair(u, v), d[v]);
}
// Diameter of Weighted Tree
// return value : { {u, v}, length }
template <typename T>
pair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) {
auto d = Depth(g, 0);
int u = max_element(begin(d), end(d)) - begin(d);
d = Depth(g, u);
int v = max_element(begin(d), end(d)) - begin(d);
return make_pair(make_pair(u, v), d[v]);
}
// nodes on the path u-v ( O(N) )
template <typename G>
vector<int> Path(G &g, int u, int v) {
vector<int> ret;
int end = 0;
auto dfs = [&](auto rec, int cur, int par = -1) -> void {
ret.push_back(cur);
if (cur == v) {
end = 1;
return;
}
for (int dst : g[cur]) {
if (dst == par) continue;
rec(rec, dst, cur);
if (end) return;
}
if (end) return;
ret.pop_back();
};
dfs(dfs, u);
return ret;
}
/**
* @brief グラフユーティリティ
* @docs docs/graph/graph-utility.md
*/
//
template <typename T>
struct has_cost {
private:
template <typename U>
static auto confirm(U u) -> decltype(u.cost, std::true_type());
static auto confirm(...) -> std::false_type;
public:
enum : bool { value = decltype(confirm(std::declval<T>()))::value };
};
template <typename T>
vector<vector<T>> inverse_tree(const vector<vector<T>>& g) {
int N = (int)g.size();
vector<vector<T>> rg(N);
for (int i = 0; i < N; i++) {
for (auto& e : g[i]) {
if constexpr (is_same<T, int>::value) {
rg[e].push_back(i);
} else if constexpr (has_cost<T>::value) {
rg[e].emplace_back(e.to, i, e.cost);
} else {
assert(0);
}
}
}
return rg;
}
template <typename T>
vector<vector<T>> rooted_tree(const vector<vector<T>>& g, int root = 0) {
int N = (int)g.size();
vector<vector<T>> rg(N);
vector<char> v(N, false);
v[root] = true;
queue<int> que;
que.emplace(root);
while (!que.empty()) {
auto p = que.front();
que.pop();
for (auto& e : g[p]) {
if (v[e] == false) {
v[e] = true;
que.push(e);
rg[p].push_back(e);
}
}
}
return rg;
}
/**
* @brief 根付き木・逆辺からなる木への変換
*/
using namespace std;
namespace internal {
using i64 = long long;
using u64 = unsigned long long;
using u128 = __uint128_t;
template <int BASE_NUM = 2>
struct Hash : array<u64, BASE_NUM> {
using array<u64, BASE_NUM>::operator[];
static constexpr int n = BASE_NUM;
Hash() : array<u64, BASE_NUM>() {}
static constexpr u64 md = (1ull << 61) - 1;
constexpr static Hash set(const i64 &a) {
Hash res;
fill(begin(res), end(res), cast(a));
return res;
}
Hash &operator+=(const Hash &r) {
for (int i = 0; i < n; i++)
if (((*this)[i] += r[i]) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator+=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++)
if (((*this)[i] += s) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator-=(const Hash &r) {
for (int i = 0; i < n; i++)
if (((*this)[i] += md - r[i]) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator-=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++)
if (((*this)[i] += md - s) >= md) (*this)[i] -= md;
return *this;
}
Hash &operator*=(const Hash &r) {
for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], r[i]);
return *this;
}
Hash &operator*=(const i64 &r) {
u64 s = cast(r);
for (int i = 0; i < n; i++) (*this)[i] = modmul((*this)[i], s);
return *this;
}
Hash operator+(const Hash &r) { return Hash(*this) += r; }
Hash operator+(const i64 &r) { return Hash(*this) += r; }
Hash operator-(const Hash &r) { return Hash(*this) -= r; }
Hash operator-(const i64 &r) { return Hash(*this) -= r; }
Hash operator*(const Hash &r) { return Hash(*this) *= r; }
Hash operator*(const i64 &r) { return Hash(*this) *= r; }
Hash operator-() const {
Hash res;
for (int i = 0; i < n; i++) res[i] = (*this)[i] == 0 ? 0 : md - (*this)[i];
return res;
}
friend Hash pfma(const Hash &a, const Hash &b, const Hash &c) {
Hash res;
for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], c[i]);
return res;
}
friend Hash pfma(const Hash &a, const Hash &b, const i64 &c) {
Hash res;
u64 s = cast(c);
for (int i = 0; i < n; i++) res[i] = modfma(a[i], b[i], s);
return res;
}
Hash pow(long long e) {
Hash a{*this}, res{Hash::set(1)};
for (; e; a *= a, e >>= 1) {
if (e & 1) res *= a;
}
return res;
}
static Hash get_basis() {
static auto rand_time =
chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count();
static mt19937_64 rng(rand_time);
Hash h;
for (int i = 0; i < n; i++) {
while (isPrimitive(h[i] = rng() % (md - 1) + 1) == false)
;
}
return h;
}
private:
static u64 modpow(u64 a, u64 b) {
u64 r = 1;
for (a %= md; b; a = modmul(a, a), b >>= 1) r = modmul(r, a);
return r;
}
static bool isPrimitive(u64 x) {
for (auto &d : vector<u64>{2, 3, 5, 7, 11, 13, 31, 41, 61, 151, 331, 1321})
if (modpow(x, (md - 1) / d) <= 1) return false;
return true;
}
static inline constexpr u64 cast(const long long &a) {
return a < 0 ? a + md : a;
}
static inline constexpr u64 modmul(const u64 &a, const u64 &b) {
u128 d = u128(a) * b;
u64 ret = (u64(d) & md) + u64(d >> 61);
return ret >= md ? ret - md : ret;
}
static inline constexpr u64 modfma(const u64 &a, const u64 &b, const u64 &c) {
u128 d = u128(a) * b + c;
u64 ret = (d >> 61) + (u64(d) & md);
return ret >= md ? ret - md : ret;
}
};
} // namespace internal
/**
* @brief ハッシュ構造体
* @docs docs/internal/internal-hash.md
*/
template <typename G>
struct RootedTreeHash {
using Hash = internal::Hash<1>;
const G& g;
int n;
vector<Hash> hash;
vector<int> depth;
static vector<Hash>& xs() {
static vector<Hash> _xs;
return _xs;
}
RootedTreeHash(const G& _g, int root = 0) : g(_g), n(g.size()) {
hash.resize(n);
depth.resize(n, 0);
while ((int)xs().size() <= n) xs().push_back(Hash::get_basis());
dfs(root, -1);
}
private:
int dfs(int c, int p) {
int dep = 0;
for (auto& d : g[c]) {
if (d != p) dep = max(dep, dfs(d, c) + 1);
}
Hash x = xs()[dep], h = Hash::set(1);
for (auto& d : g[c]) {
if (d != p) h = h * (x + hash[d]);
}
hash[c] = h;
return depth[c] = dep;
}
};
/**
* @brief 根付き木のハッシュ
*/
using namespace Nyaan;
vvi input_graph(int N, vi p) {
vvi g(N);
rep1(i, N - 1) g[p[i] - 1].push_back(i);
return g;
}
vi output_graph(vvi g) {
int N = sz(g);
vi p(N);
rep(i, N) each(j, g[i]) p[j] = i + 1;
return p;
}
int depth_max(vvi g) {
int res = 0;
auto dfs = [&](auto rc, int c, int depth) -> void {
amax(res, depth);
each(d, g[c]) rc(rc, d, depth + 1);
};
dfs(dfs, 0, 0);
return res;
}
vvi get_part(vvi g, int p) {
vvi res;
int buf = 0;
auto append = [&]() {
res.push_back({});
return buf++;
};
auto dfs = [&](auto rc, int c, int c2) -> void {
each(d, g[c]) {
int d2 = append();
res[c2].push_back(d2);
rc(rc, d, d2);
}
};
dfs(dfs, p, append());
return res;
}
vvi prod(vvi G1, vvi G2) {
vvi res(1LL * sz(G1) * sz(G2));
rep(i, sz(G1)) each(j, G1[i]) res[i].push_back(j);
int buf = sz(G1);
auto dfs = [&](auto rc, int c, int c3) -> void {
each(d, G2[c]) {
int d3 = buf++;
res[c3].push_back(d3);
rc(rc, d, d3);
}
};
rep(i, sz(G1)) dfs(dfs, 0, i);
return res;
}
void q() {
inl(Na, Nb, Nc);
vi A(Na), B(Nb), C(Nc);
in(A, B, C);
vvi Ga = input_graph(Na, A);
vvi Gb = input_graph(Nb, B);
vvi Gc = input_graph(Nc, C);
RootedTreeHash<vvi> Hc(Gc);
using Hash = typename RootedTreeHash<vvi>::Hash;
vector<pair<Hash, int>> hc;
each(d, Gc[0]) hc.emplace_back(Hc.hash[d], d);
sort(all(hc));
auto Dc = Depth(Gc);
int k = max_element(all(Dc)) - begin(Dc);
int dc = depth_max(Gc);
auto calc = [&]() -> pair<vvi, vvi> {
int da = depth_max(Ga);
if (da > dc) return {};
int p = k;
rep(_, dc - da) p = C[p] - 1;
vvi Gx = get_part(Gc, p);
if (1LL * sz(Ga) * sz(Gx) > Nc) return {};
vvi Gc1 = prod(Ga, Gx);
RootedTreeHash<vvi> Hc1(Gc1);
vector<Hash> hc1;
each(d, Gc1[0]) hc1.push_back(Hc1.hash[d]);
sort(all(hc1));
vi used(Nc);
{
int i = 0;
rep(j, sz(hc1)) {
while (i < sz(hc) and hc1[j] != hc[i].fi) i++;
if (i == sz(hc)) return {};
used[hc[i].se] = 1, i++;
}
}
vvi Gc2 = Gc;
{
vi nx0;
each(j, Gc[0]) if (!used[j]) nx0.push_back(j);
Gc2[0] = nx0;
}
auto Dc2 = Depth(Gc2, 0);
int dc2 = Max(Dc2);
int db = depth_max(Gb);
if (db > dc2) return {};
p = max_element(all(Dc2)) - begin(Dc2);
rep(_, dc2 - db) p = C[p] - 1;
vvi Gy = get_part(Gc2, p);
vvi Gc3 = prod(Gb, Gy);
RootedTreeHash<vvi> hc2(Gc2), hc3(Gc3);
if (hc2.hash[0] != hc3.hash[0]) return {};
return {Gx, Gy};
};
pair<vvi, vvi> ans;
ans = calc();
if (ans.fi.empty() or ans.se.empty()) {
swap(A, B);
swap(Na, Nb);
swap(Ga, Gb);
ans = calc();
swap(ans.fi, ans.se);
swap(A, B);
swap(Na, Nb);
swap(Ga, Gb);
}
if (ans.fi.empty() or ans.se.empty()) {
out("Impossible");
} else {
vi X = output_graph(ans.fi);
vi Y = output_graph(ans.se);
out(sz(X), sz(Y));
out(X);
out(Y);
}
}
void Nyaan::solve() {
int t = 1;
in(t);
while (t--) q();
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 1ms
memory: 3668kb
input:
2 2 3 10 0 1 0 1 2 0 1 1 3 4 3 6 3 1 9 4 3 10 0 1 2 2 0 1 2 0 1 1 3 4 3 6 3 1 9
output:
Impossible 2 1 0 1 0
result:
ok 2 cases passed
Test #2:
score: 0
Accepted
time: 613ms
memory: 23652kb
input:
11122 3 3 11 0 1 1 0 1 1 0 1 1 1 4 4 1 1 8 8 1 7 2 10 0 1 2 2 2 1 1 0 1 0 1 2 1 1 5 5 5 1 1 7 8 14 0 1 2 1 1 1 1 0 1 2 1 1 1 1 1 0 1 1 3 1 1 1 1 1 1 1 11 1 1 4 8 11 0 1 1 1 0 1 1 1 1 1 6 6 0 1 1 1 1 1 6 6 1 1 1 3 4 13 0 1 1 0 1 1 1 0 1 1 3 1 5 1 1 8 1 10 1 12 11 2 14 0 1 2 1 4 4 4 1 1 1 1 0 1 0 1 1 ...
output:
3 1 0 1 1 0 1 2 0 0 1 1 1 0 0 1 1 0 0 2 2 0 1 0 1 1 2 0 0 1 1 5 0 0 1 2 1 1 1 1 0 0 8 2 0 1 1 3 3 3 1 1 0 1 1 1 0 0 4 1 0 1 1 1 0 3 1 0 1 1 0 5 1 0 1 2 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 2 1 0 1 0 5 1 0 1 1 1 1 0 1 1 0 0 1 3 0 0 1 1 1 2 0 0 1 3 1 0 1 1 0 1 4 0 0 1 1 1 1 4 0 0 1 1 1 1 2 0 0 1 1 3 ...
result:
ok 11122 cases passed
Test #3:
score: 0
Accepted
time: 1ms
memory: 3672kb
input:
1 5 5 49 0 1 1 3 1 0 1 2 1 2 0 1 2 3 4 1 6 7 8 9 1 11 12 13 14 11 16 17 18 19 1 21 22 23 24 1 26 26 1 1 30 31 31 30 30 35 36 36 35 30 40 41 41 40 1 45 46 46 45
output:
5 5 0 1 2 3 4 0 1 2 2 1
result:
ok 1 cases passed
Extra Test:
score: 0
Extra Test Passed