QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#616043 | #9449. New School Term | ucup-team296# | TL | 2762ms | 51868kb | Rust | 42.1kb | 2024-10-05 21:42:01 | 2024-10-05 21:42:01 |
Judging History
answer
//
pub mod solution {
//{"name":"ucucp_11_o","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""},{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"ucucp_11_o"}}}
use crate::algo_lib::collections::bit_set::BitSet;
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::collections::vec_ext::inc_dec::IncDec;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use std::collections::HashSet;
use std::mem::swap;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
let n = input.read_size();
let m = input.read_size();
let edges = input.read_size_pair_vec(m).dec();
let mut dsu = DSU::new(2 * n);
let mut sets = (0..2 * n).map(|i| vec![i]).collect_vec();
let mut size = vec![(1, 0); 2 * n];
let mut col = vec![0; 2 * n];
let mut present = (0..2 * n).collect::<HashSet<_>>();
for i in (0..m).rev() {
let (mut u, mut v) = edges[i];
if dsu.get(u) == dsu.get(v) {
continue;
}
let mut sw = col[u] == col[v];
u = dsu.get(u);
v = dsu.get(v);
if sets[u].len() < sets[v].len() {
swap(&mut u, &mut v);
}
let alt_u = if sw {
let res = (size[u].0 + size[v].0, size[u].1 + size[v].1);
size[u] = (size[u].0 + size[v].1, size[u].1 + size[v].0);
res
} else {
let res = (size[u].0 + size[v].1, size[u].1 + size[v].0);
size[u] = (size[u].0 + size[v].0, size[u].1 + size[v].1);
res
};
let mut can_do = BitSet::new(n + 1);
can_do.set(0);
present.remove(&v);
for &j in &present {
let (x, y) = size[j];
let mut with_x = can_do.clone();
with_x <<= x;
can_do <<= y;
can_do |= &with_x;
}
if !can_do[n] {
size[u] = alt_u;
sw = !sw;
}
if sw {
for &j in &sets[v] {
col[j] ^= 1;
}
}
let mut sv = Vec::new();
swap(&mut sv, &mut sets[v]);
sets[u].extend(sv);
dsu.join(u, v);
present.remove(&v);
}
let present = present.into_iter().collect::<Vec<_>>();
let mut last = Arr2d::new(present.len() + 1, n + 1, None);
last[(0, 0)] = Some(true);
for (i, &j) in present.iter().enumerate() {
let (x, y) = size[j];
for j in 0..=n {
if last[(i, j)].is_some() {
if j + x <= n {
last[(i + 1, j + x)] = Some(false);
}
if j + y <= n {
last[(i + 1, j + y)] = Some(true);
}
}
}
}
assert!(last[(present.len(), n)].is_some());
let mut cur = n;
for (i, &j) in present.iter().enumerate().rev() {
if last[(i + 1, cur)].unwrap() {
cur -= size[j].1;
for &j in &sets[j] {
col[j] ^= 1;
}
} else {
cur -= size[j].0;
}
}
for i in col {
out.print(i);
}
out.print_line(());
}
pub static TEST_TYPE: TestType = TestType::Single;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = ();
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => {
input.skip_whitespace();
input.peek().is_none()
}
TaskType::Interactive => true,
}
}
}
pub mod algo_lib {
pub mod collections {
pub mod bit_set {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::numbers::num_traits::bit_ops::BitOps;
use std::ops::BitAndAssign;
use std::ops::BitOrAssign;
use std::ops::Index;
use std::ops::ShlAssign;
use std::ops::ShrAssign;
const TRUE: bool = true;
const FALSE: bool = false;
#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitSet {
data: Vec<u64>,
len: usize,
}
impl BitSet {
pub fn new(len: usize) -> Self {
let data_len = if len == 0 {
0
} else {
Self::index(len - 1) + 1
};
Self {
data: vec![0; data_len],
len,
}
}
pub fn from_slice(len: usize, set: &[usize]) -> Self {
let mut res = Self::new(len);
for &i in set {
res.set(i);
}
res
}
pub fn set(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].set_bit(at & 63);
}
pub fn unset(&mut self, at: usize) {
assert!(at < self.len);
self.data[Self::index(at)].unset_bit(at & 63);
}
pub fn change(&mut self, at: usize, value: bool) {
if value {
self.set(at);
} else {
self.unset(at);
}
}
pub fn flip(&mut self, at: usize) {
self.change(at, !self[at]);
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.len
}
pub fn fill(&mut self, value: bool) {
// 1.43
self.data.legacy_fill(if value { std::u64::MAX } else { 0 });
if value {
self.fix_last();
}
}
pub fn is_superset(&self, other: &Self) -> bool {
assert_eq!(self.len, other.len);
for i in 0..self.data.len() {
if self.data[i] & other.data[i] != other.data[i] {
return false;
}
}
true
}
pub fn is_subset(&self, other: &Self) -> bool {
other.is_superset(self)
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.into_iter()
}
fn index(at: usize) -> usize {
at >> 6
}
pub fn count_ones(&self) -> usize {
self.data.iter().map(|x| x.count_ones() as usize).sum()
}
fn fix_last(&mut self) {
if self.len & 63 != 0 {
let mask = (1 << (self.len & 63)) - 1;
*self.data.last_mut().unwrap() &= mask;
}
}
}
pub struct BitSetIter<'s> {
at: usize,
inside: usize,
set: &'s BitSet,
}
impl<'s> Iterator for BitSetIter<'s> {
type Item = usize;
fn next(&mut self) -> Option<Self::Item> {
while self.at < self.set.data.len()
&& (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
{
self.at += 1;
self.inside = 0;
}
if self.at == self.set.data.len() {
None
} else {
while !self.set.data[self.at].is_set(self.inside) {
self.inside += 1;
}
let res = self.at * 64 + self.inside;
if res < self.set.len {
self.inside += 1;
Some(res)
} else {
None
}
}
}
}
impl<'a> IntoIterator for &'a BitSet {
type Item = usize;
type IntoIter = BitSetIter<'a>;
fn into_iter(self) -> Self::IntoIter {
BitSetIter {
at: 0,
inside: 0,
set: self,
}
}
}
impl BitOrAssign<&BitSet> for BitSet {
fn bitor_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i |= j;
}
}
}
impl BitAndAssign<&BitSet> for BitSet {
fn bitand_assign(&mut self, rhs: &BitSet) {
assert_eq!(self.len, rhs.len);
for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
*i &= j;
}
}
}
impl ShlAssign<usize> for BitSet {
fn shl_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in 0..self.data.len() {
let new_carry = self.data[i] >> (64 - small_shift);
self.data[i] <<= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_right(big_shift);
self.data[..big_shift].fill(0);
}
self.fix_last();
}
}
impl ShrAssign<usize> for BitSet {
fn shr_assign(&mut self, rhs: usize) {
if rhs == 0 {
return;
}
let small_shift = rhs & 63;
if small_shift != 0 {
let mut carry = 0;
for i in (0..self.data.len()).rev() {
let new_carry = self.data[i] << (64 - small_shift);
self.data[i] >>= small_shift;
self.data[i] |= carry;
carry = new_carry;
}
}
let big_shift = rhs >> 6;
if big_shift != 0 {
self.data.rotate_left(big_shift);
let from = self.data.len() - big_shift;
self.data[from..].fill(0);
}
}
}
impl Index<usize> for BitSet {
type Output = bool;
fn index(&self, at: usize) -> &Self::Output {
assert!(at < self.len);
if self.data[Self::index(at)].is_set(at & 63) {
&TRUE
} else {
&FALSE
}
}
}
impl From<Vec<bool>> for BitSet {
fn from(data: Vec<bool>) -> Self {
let mut res = Self::new(data.len());
for (i, &value) in data.iter().enumerate() {
res.change(i, value);
}
res
}
}
}
pub mod dsu {
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;
#[derive(Clone)]
pub struct DSU {
id: Vec<Cell<u32>>,
size: Vec<u32>,
count: usize,
}
impl DSU {
pub fn new(n: usize) -> Self {
Self {
id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
size: vec![1; n],
count: n,
}
}
pub fn size(&self, i: usize) -> usize {
self.size[self.get(i)] as usize
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.id.len()
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.id.iter().enumerate().filter_map(|(i, id)| {
if (i as u32) == id.get() {
Some(i)
} else {
None
}
})
}
pub fn set_count(&self) -> usize {
self.count
}
pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
a = self.get(a);
b = self.get(b);
if a == b {
false
} else {
self.size[a] += self.size[b];
self.id[b].replace(a as u32);
self.count -= 1;
true
}
}
pub fn get(&self, i: usize) -> usize {
if self.id[i].get() != i as u32 {
let res = self.get(self.id[i].get() as usize);
self.id[i].replace(res as u32);
}
self.id[i].get() as usize
}
pub fn clear(&mut self) {
self.count = self.id.len();
self.size.legacy_fill(1);
self.id.iter().enumerate().for_each(|(i, id)| {
id.replace(i as u32);
});
}
pub fn parts(&self) -> Vec<Vec<usize>> {
let roots = self.iter().collect_vec();
let mut res = vec![Vec::new(); roots.len()];
for i in 0..self.id.len() {
res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
}
res
}
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
fn collect_vec(self) -> Vec<T> {
self.collect()
}
}
impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod md_arr {
pub mod arr2d {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use std::ops::Index;
use std::ops::IndexMut;
use std::ops::Range;
use std::slice::Iter;
use std::vec::IntoIter;
#[derive(Clone, Eq, PartialEq, Default)]
pub struct Arr2d<T> {
d1: usize,
d2: usize,
data: Vec<T>,
}
impl<T: Clone> Arr2d<T> {
pub fn new(d1: usize, d2: usize, value: T) -> Self {
Self {
d1,
d2,
data: vec![value; d1 * d2],
}
}
}
impl<T> Arr2d<T> {
pub fn generate<F>(d1: usize, d2: usize, mut gen: F) -> Self
where
F: FnMut(usize, usize) -> T,
{
let mut data = Vec::with_capacity(d1 * d2);
for i in 0usize..d1 {
for j in 0usize..d2 {
data.push(gen(i, j));
}
}
Self { d1, d2, data }
}
pub fn d1(&self) -> usize {
self.d1
}
pub fn d2(&self) -> usize {
self.d2
}
pub fn iter(&self) -> Iter<'_, T> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
self.data.iter_mut()
}
pub fn row(&self, row: usize) -> impl Iterator<Item = &T> {
assert!(row < self.d1);
self.data.iter().skip(row * self.d2).take(self.d2)
}
pub fn row_mut(&mut self, row: usize) -> impl Iterator<Item = &mut T> {
assert!(row < self.d1);
self.data.iter_mut().skip(row * self.d2).take(self.d2)
}
pub fn column(&self, col: usize) -> impl Iterator<Item = &T> {
assert!(col < self.d2);
self.data.iter().skip(col).step_by(self.d2)
}
pub fn column_mut(&mut self, col: usize) -> impl Iterator<Item = &mut T> {
assert!(col < self.d2);
self.data.iter_mut().skip(col).step_by(self.d2)
}
pub fn swap(&mut self, r1: usize, c1: usize, r2: usize, c2: usize) {
assert!(r1 < self.d1);
assert!(r2 < self.d1);
assert!(c1 < self.d2);
assert!(c2 < self.d2);
self.data.swap(r1 * self.d2 + c1, r2 * self.d2 + c2);
}
pub fn rows(&self) -> Range<usize> {
0..self.d1
}
pub fn cols(&self) -> Range<usize> {
0..self.d2
}
pub fn swap_rows(&mut self, r1: usize, r2: usize) {
assert!(r1 < self.d1);
assert!(r2 < self.d1);
if r1 == r2 {
return;
}
let (r1, r2) = (r1.min(r2), r1.max(r2));
let (head, tail) = self.data.split_at_mut(r2 * self.d2);
head[r1 * self.d2..(r1 + 1) * self.d2].swap_with_slice(&mut tail[..self.d2]);
}
}
impl<T: Clone> Arr2d<T> {
pub fn fill(&mut self, elem: T) {
self.data.legacy_fill(elem);
}
pub fn transpose(&self) -> Self {
Self::generate(self.d2, self.d1, |i, j| self[(j, i)].clone())
}
}
impl<T> Index<(usize, usize)> for Arr2d<T> {
type Output = T;
fn index(&self, (row, col): (usize, usize)) -> &Self::Output {
assert!(row < self.d1);
assert!(col < self.d2);
&self.data[self.d2 * row + col]
}
}
impl<T> Index<usize> for Arr2d<T> {
type Output = [T];
fn index(&self, index: usize) -> &Self::Output {
&self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> IndexMut<(usize, usize)> for Arr2d<T> {
fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut T {
assert!(row < self.d1);
assert!(col < self.d2);
&mut self.data[self.d2 * row + col]
}
}
impl<T> IndexMut<usize> for Arr2d<T> {
fn index_mut(&mut self, index: usize) -> &mut [T] {
&mut self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> AsRef<Vec<T>> for Arr2d<T> {
fn as_ref(&self) -> &Vec<T> {
&self.data
}
}
impl<T> AsMut<Vec<T>> for Arr2d<T> {
fn as_mut(&mut self) -> &mut Vec<T> {
&mut self.data
}
}
impl<T: Writable> Writable for Arr2d<T> {
fn write(&self, output: &mut Output) {
let mut at = 0usize;
for i in 0usize..self.d1 {
if i != 0 {
output.put(b'\n');
}
for j in 0usize..self.d2 {
if j != 0 {
output.put(b' ');
}
self.data[at].write(output);
at += 1;
}
}
}
}
impl<T> IntoIterator for Arr2d<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
impl<'a, T> IntoIterator for &'a Arr2d<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
pub trait Arr2dRead {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T>;
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32>;
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64>;
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize>;
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char>;
}
impl Arr2dRead for Input<'_> {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T> {
Arr2d::generate(d1, d2, |_, _| self.read())
}
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32> {
self.read_table(d1, d2)
}
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64> {
self.read_table(d1, d2)
}
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize> {
self.read_table(d1, d2)
}
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char> {
self.read_table(d1, d2)
}
}
pub trait Arr2dCharWrite {
fn print_table(&mut self, table: &Arr2d<char>);
}
impl Arr2dCharWrite for Output<'_> {
fn print_table(&mut self, table: &Arr2d<char>) {
let mut at = 0usize;
for _ in 0..table.d1 {
for _ in 0..table.d2 {
self.print(table.data[at]);
at += 1;
}
self.put(b'\n');
}
}
}
impl<T: Readable> Readable for Arr2d<T> {
fn read(input: &mut Input) -> Self {
let d1 = input.read();
let d2 = input.read();
input.read_table(d1, d2)
}
}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize;
fn less_or_eq(&self, el: &T) -> usize;
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el {
None
} else {
Some(at)
}
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
fn legacy_fill(&mut self, val: T);
}
impl<T: Clone> LegacyFill<T> for [T] {
fn legacy_fill(&mut self, val: T) {
for el in self.iter_mut() {
*el = val.clone();
}
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
pub mod inc_dec {
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;
pub trait IncDec {
#[must_use]
fn inc(self) -> Self;
#[must_use]
fn dec(self) -> Self;
}
impl<T: AdditionMonoidWithSub + One> IncDec for T {
fn inc(self) -> Self {
self + T::one()
}
fn dec(self) -> Self {
self - T::one()
}
}
impl<T: AdditionMonoidWithSub + One> IncDec for Vec<T> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|i| *i += T::one());
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|i| *i -= T::one());
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for Vec<(T, U)> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V> IncDec for Vec<(T, U, V)> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, _)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, _)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W> IncDec
for Vec<(T, U, V, W)>
{
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W, X> IncDec
for Vec<(T, U, V, W, X)>
{
fn inc(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for (T, U) {
fn inc(mut self) -> Self {
self.0 += T::one();
self.1 += U::one();
self
}
fn dec(mut self) -> Self {
self.0 -= T::one();
self.1 -= U::one();
self
}
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
pub struct Input<'s> {
input: &'s mut dyn Read,
buf: Vec<u8>,
at: usize,
buf_read: usize,
}
macro_rules! read_impl {
($t: ty, $read_name: ident, $read_vec_name: ident) => {
pub fn $read_name(&mut self) -> $t {
self.read()
}
pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
self.read_vec(len)
}
};
($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
read_impl!($t, $read_name, $read_vec_name);
pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
self.read_vec(len)
}
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut dyn Read) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
}
}
pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !b.is_ascii_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if c.is_ascii_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() {
None
} else {
Some(res)
}
}
//noinspection RsSelfConvention
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
//noinspection RsSelfConvention
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> char {
self.skip_whitespace();
self.get().unwrap().into()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for char {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
macro_rules! read_integer {
($($t:ident)+) => {$(
impl Readable for $t {
fn read(input: &mut Input) -> Self {
input.skip_whitespace();
let mut c = input.get().unwrap();
let sgn = match c {
b'-' => {
c = input.get().unwrap();
true
}
b'+' => {
c = input.get().unwrap();
false
}
_ => false,
};
let mut res = 0;
loop {
assert!(c.is_ascii_digit());
res *= 10;
let d = (c - b'0') as $t;
if sgn {
res -= d;
} else {
res += d;
}
match input.get() {
None => break,
Some(ch) => {
if ch.is_ascii_whitespace() {
break;
} else {
c = ch;
}
}
}
}
res
}
}
)+};
}
read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl<$($name: Readable), +> Readable for ($($name,)+) {
fn read(input: &mut Input) -> Self {
($($name::read(input),)+)
}
}
}
}
tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
self.print_per_line_iter(arg.iter());
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(b' ');
}
e.write(self);
}
}
pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
self.print_iter(iter);
self.put(b'\n');
}
pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
for e in iter {
e.write(self);
self.put(b'\n');
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {$(
impl Writable for $t {
fn write(&self, output: &mut Output) {
self.to_string().write(output);
}
}
)+};
}
write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident: $id:tt )*) => {
impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
fn write(&self, out: &mut Output) {
self.0.write(out);
$(
out.put(b' ');
self.$id.write(out);
)*
}
}
}
}
tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid:
MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
IntegerMultiplicationMonoid for T
{
}
pub trait MultiplicationGroup:
MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}
impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
MultiplicationGroup for T
{
}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t: ident)+) => {$(
impl Zero for $t {
fn zero() -> Self {
0
}
}
impl One for $t {
fn one() -> Self {
1
}
}
)+};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod bit_ops {
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use std::ops::BitAnd;
use std::ops::BitAndAssign;
use std::ops::BitOr;
use std::ops::BitOrAssign;
use std::ops::BitXor;
use std::ops::BitXorAssign;
use std::ops::Not;
use std::ops::RangeInclusive;
use std::ops::Shl;
use std::ops::ShlAssign;
use std::ops::Shr;
use std::ops::ShrAssign;
pub trait BitOps:
Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ Zero
+ One
+ PartialEq
{
fn bit(at: usize) -> Self {
Self::one() << at
}
fn is_set(&self, at: usize) -> bool {
(*self >> at & Self::one()) == Self::one()
}
fn set_bit(&mut self, at: usize) {
*self |= Self::bit(at)
}
fn unset_bit(&mut self, at: usize) {
*self &= !Self::bit(at)
}
#[must_use]
fn with_bit(mut self, at: usize) -> Self {
self.set_bit(at);
self
}
#[must_use]
fn without_bit(mut self, at: usize) -> Self {
self.unset_bit(at);
self
}
fn flip_bit(&mut self, at: usize) {
*self ^= Self::bit(at)
}
fn all_bits(n: usize) -> Self {
let mut res = Self::zero();
for i in 0..n {
res.set_bit(i);
}
res
}
fn iter_all(n: usize) -> RangeInclusive<Self> {
Self::zero()..=Self::all_bits(n)
}
}
impl<
T: Copy
+ BitAnd<Output = Self>
+ BitAndAssign
+ BitOr<Output = Self>
+ BitOrAssign
+ BitXor<Output = Self>
+ BitXorAssign
+ Not<Output = Self>
+ Shl<usize, Output = Self>
+ ShlAssign<usize>
+ Shr<usize, Output = Self>
+ ShrAssign<usize>
+ One
+ Zero
+ PartialEq,
> BitOps for T
{
}
pub trait Bits: BitOps {
fn bits() -> u32;
}
macro_rules! bits_integer_impl {
($($t: ident $bits: expr),+) => {$(
impl Bits for $t {
fn bits() -> u32 {
$bits
}
}
)+};
}
bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
}
}
}
fn main() {
let mut sin = std::io::stdin();
let input = algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = algo_lib::io::output::Output::new(&mut stdout);
solution::run(input, output);
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 2300kb
input:
2 4 1 3 2 4 1 4 1 2
output:
1010
result:
ok Output is valid. OK
Test #2:
score: 0
Accepted
time: 0ms
memory: 2128kb
input:
3 7 2 5 1 3 4 6 2 6 4 5 2 4 5 6
output:
110010
result:
ok Output is valid. OK
Test #3:
score: 0
Accepted
time: 0ms
memory: 2304kb
input:
1 0
output:
10
result:
ok Output is valid. OK
Test #4:
score: 0
Accepted
time: 0ms
memory: 2112kb
input:
1 1 1 2
output:
10
result:
ok Output is valid. OK
Test #5:
score: 0
Accepted
time: 0ms
memory: 2176kb
input:
2 3 2 4 3 4 1 2
output:
1001
result:
ok Output is valid. OK
Test #6:
score: 0
Accepted
time: 0ms
memory: 2236kb
input:
3 8 4 6 3 5 1 4 2 4 1 6 1 2 3 4 4 5
output:
101010
result:
ok Output is valid. OK
Test #7:
score: 0
Accepted
time: 0ms
memory: 2024kb
input:
4 9 4 7 3 8 1 5 2 7 2 8 6 8 7 8 1 4 1 6
output:
10101001
result:
ok Output is valid. OK
Test #8:
score: 0
Accepted
time: 0ms
memory: 2160kb
input:
5 16 3 6 9 10 2 7 1 10 1 5 2 10 3 5 5 6 3 4 2 5 4 5 3 8 4 7 6 8 1 6 7 10
output:
0010111010
result:
ok Output is valid. OK
Test #9:
score: 0
Accepted
time: 0ms
memory: 2304kb
input:
6 13 4 5 2 9 3 8 4 8 4 11 10 12 3 4 3 9 5 11 2 8 5 10 5 8 1 11
output:
001001110110
result:
ok Output is valid. OK
Test #10:
score: 0
Accepted
time: 0ms
memory: 2160kb
input:
12 153 1 24 16 18 7 14 1 16 20 21 9 14 21 22 4 5 17 24 4 12 5 17 13 24 14 15 12 23 12 16 8 11 14 24 9 16 2 5 6 19 11 17 4 22 4 7 6 16 7 20 8 15 5 24 2 10 10 21 21 24 1 12 11 19 18 21 18 24 12 17 13 22 7 9 13 23 4 9 11 13 15 21 5 7 2 4 15 16 17 19 11 16 11 20 7 8 4 15 13 14 6 18 2 19 9 13 23 24 4 21 ...
output:
111100011001101110000001
result:
ok Output is valid. OK
Test #11:
score: 0
Accepted
time: 5ms
memory: 2512kb
input:
259 33757 472 500 65 336 138 469 307 442 427 458 43 239 17 508 460 466 108 393 79 92 250 483 44 277 17 132 35 57 155 499 184 474 246 272 274 418 457 458 338 372 196 514 31 208 117 187 90 229 153 284 189 355 16 337 146 456 269 271 279 412 305 336 303 441 399 472 85 286 91 97 157 437 137 379 71 360 27...
output:
111000110010111001101110000111000000011111100010101100100010001110101101111110000111000101111100010110101110111100011010101100111010010011101010011010011010011101100111001011110001100111000010101011100110110001001010010010101010010110011001100001010110000100001110101110000010110001010010000110110011...
result:
ok Output is valid. OK
Test #12:
score: 0
Accepted
time: 44ms
memory: 6360kb
input:
811 265557 217 1153 383 1609 165 177 612 1602 1057 1428 37 436 135 1200 368 684 448 722 145 1583 325 1052 246 480 74 148 122 1111 1256 1327 304 1070 1285 1542 802 813 454 1563 265 1193 94 848 432 1156 429 1194 427 1230 1152 1406 1329 1355 702 845 591 1232 877 1288 1257 1549 340 659 1080 1333 910 137...
output:
110111111101000111011111111101011110100101000101001000000001111000101111010100100101110100110101000111110100111100100110111110100101110101111100011110101010011001101010100110010011011111011011110101111111011000001100001101110111111110100010011100011110111111010001011111110110011111100001010011011101...
result:
ok Output is valid. OK
Test #13:
score: 0
Accepted
time: 229ms
memory: 7596kb
input:
1691 323743 1246 2397 1445 2647 2010 2806 2001 2896 802 2258 2679 2976 2203 2875 2445 2698 137 3004 536 1800 2316 2520 594 1517 279 1558 1934 2871 57 1358 357 976 1764 2672 869 2137 1694 2201 491 1906 1177 1414 1304 1377 2454 2653 626 2637 1425 1677 620 876 1326 2085 404 874 626 1565 136 597 2885 31...
output:
111010001000000110110000100100010011101101011001011100101110000011100010001111000001000010100101111010111000111000110011100100110000110001001101110010110111110110110010100101010101000100100010111001011011111110010011000011110101000111011010010110101011011001001110100100110001100101111100111011101010...
result:
ok Output is valid. OK
Test #14:
score: 0
Accepted
time: 792ms
memory: 7336kb
input:
2891 285302 2273 3206 2376 4737 1075 5673 2493 5453 548 1902 603 1376 1948 2985 108 4730 2172 2948 947 1758 762 1558 2813 5701 2287 3502 297 1501 568 4247 4569 5071 832 3005 412 4226 1813 4519 726 3017 1658 3990 1771 3230 1705 2149 765 4782 5420 5652 3089 4727 4362 5054 1578 3729 1111 5740 2234 5691...
output:
001110110111111001100111000010110001001000011010100001010110101011011111011011111000101110011000000001111010101010010001000111101110110100111011001111111000110010101000000110100011111110110001010000001010101000111000111111111010100111001010100001110100011110111111111010100110110001110011110111001110...
result:
ok Output is valid. OK
Test #15:
score: 0
Accepted
time: 2390ms
memory: 14308kb
input:
4413 717147 1990 3721 2169 8724 2894 5350 4689 5732 274 3456 3149 5664 463 6517 3482 7460 1820 5440 2995 6364 5476 7590 5989 8692 4286 7015 7520 8630 524 7821 3335 7017 1491 4477 6238 8230 6339 8087 565 8666 6188 6930 4280 7015 4393 8825 3686 6189 3711 6905 888 1997 2488 8544 9 3914 5135 5322 2778 6...
output:
101101100111010000110001100011010100101110101111100111111001010100010110110001010001100100001010011100001001011011100110011000000101000011111100011001101011101100001010111001111101110001011100001011101001101000011100110101011100101110110010100010111111110011011011010101001000000111100101110110001111...
result:
ok Output is valid. OK
Test #16:
score: 0
Accepted
time: 61ms
memory: 17740kb
input:
707 998991 16 83 733 1195 318 945 9 385 764 1338 396 833 408 1331 541 1405 167 1351 572 838 16 334 36 1071 765 873 445 930 48 168 857 1306 1066 1408 270 720 116 698 737 1136 460 1074 585 1195 492 690 1103 1122 698 1239 623 1355 30 140 952 1088 776 1138 71 525 690 1194 357 1062 366 632 46 744 312 520...
output:
001001101001101110110010001111111000001010101110011101010101101110010100110001100001010010011011110010101110110010111100101010110010110101001101010010110001000110111111101000101011111011100100100101010010001010000111011110010111111111110110000000111101001100001111011000101001001001111111101100010011...
result:
ok Output is valid. OK
Test #17:
score: 0
Accepted
time: 82ms
memory: 51600kb
input:
5000 0
output:
101110001001100101001000110010011100001010110000011000001011001100110011100101100110110001100011101001010111100000010100000001100111001100111010010000101101100110001011011011111011100010000001001100010010110111110111101100111000101101100101110110001001000000111101111010101000010111000110000011101011...
result:
ok Output is valid. OK
Test #18:
score: 0
Accepted
time: 78ms
memory: 51868kb
input:
5000 1 5104 7449
output:
101001111010011100110010011111100111100110001010011010010010001011000010101001011111011100110010100111010010010000010110101000100011111011110011000011001001110010111100011001101100111110001111110001100101000100011111010011000101100000000111100000001000010000010011000100110111000010010100111001011011...
result:
ok Output is valid. OK
Test #19:
score: 0
Accepted
time: 93ms
memory: 51672kb
input:
5000 13 8215 9259 4067 7015 4171 6513 1958 9790 5814 6551 711 3995 4392 8567 224 285 4618 4637 2864 8137 1910 2618 1881 5086 5503 9167
output:
001111011001001010010001110111110011100011000000100100001010001010100110011100001100111111011111100001010011110101010001010100001111011111000111011100101001010001111101010011100000111011101011101011110000111100111101111011111001001000011110100101100011110001110101000010110000100111000100011000100100...
result:
ok Output is valid. OK
Test #20:
score: 0
Accepted
time: 118ms
memory: 51332kb
input:
5000 55 7866 9685 3869 9188 3142 5921 1328 5189 1186 4841 2865 4732 5504 5634 983 5412 6630 7625 6123 9142 2937 5558 1344 5103 5443 9618 3579 6083 1044 3407 1028 6125 2895 5649 2986 3484 3659 6044 5673 7508 276 5982 694 4033 1089 6272 2661 2831 6962 9163 2717 8822 4363 5916 249 8966 9331 9920 1551 2...
output:
001001101001011111011110001010000100000101111111111001010100110110101111110011000001100001110111011100010110000110010110111101110100111111011100001000011011101110100111011110111110111000100111111011010111011110111101101100010101110110000100000011101101001001010000000001101001101010011000101001101011...
result:
ok Output is valid. OK
Test #21:
score: 0
Accepted
time: 2762ms
memory: 27544kb
input:
5000 5000 4509 6534 1710 4635 1694 2754 3105 5501 6490 6786 4306 6866 483 6111 9513 9773 217 5738 4794 5634 2466 9426 4015 6665 596 4471 1608 8259 5463 5568 5672 5975 5791 6415 150 3738 487 9066 4093 6191 534 3270 2444 5041 4873 7509 6286 7749 3655 5175 414 9604 4068 9379 884 3731 3797 5637 6712 752...
output:
111111111111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111110111111111111111111111111111111111110111111111111111111111111111111111111111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111...
result:
ok Output is valid. OK
Test #22:
score: -100
Time Limit Exceeded
input:
5000 1000000 536 2549 4636 9544 1417 8603 2634 4970 511 8885 7042 9446 1807 2806 4633 8212 1638 8794 2918 8150 1423 5343 2615 6301 7023 8526 2950 7562 6777 7968 4787 9333 4122 9857 993 6039 5459 6837 5589 7246 1644 9641 1778 7305 1334 1568 1436 9323 4902 6285 5497 6384 1584 4996 6710 8356 1371 9492 ...