QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#616043#9449. New School Termucup-team296#TL 2762ms51868kbRust42.1kb2024-10-05 21:42:012024-10-05 21:42:01

Judging History

你现在查看的是最新测评结果

  • [2024-10-05 21:42:01]
  • 评测
  • 测评结果:TL
  • 用时:2762ms
  • 内存:51868kb
  • [2024-10-05 21:42:01]
  • 提交

answer

// 
pub mod solution {
//{"name":"ucucp_11_o","group":"Manual","url":"","interactive":false,"timeLimit":2000,"tests":[{"input":"","output":""},{"input":"","output":""}],"testType":"single","input":{"type":"stdin","fileName":null,"pattern":null},"output":{"type":"stdout","fileName":null,"pattern":null},"languages":{"java":{"taskClass":"ucucp_11_o"}}}

use crate::algo_lib::collections::bit_set::BitSet;
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::collections::vec_ext::inc_dec::IncDec;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use std::collections::HashSet;
use std::mem::swap;

type PreCalc = ();

fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
    let n = input.read_size();
    let m = input.read_size();
    let edges = input.read_size_pair_vec(m).dec();

    let mut dsu = DSU::new(2 * n);
    let mut sets = (0..2 * n).map(|i| vec![i]).collect_vec();
    let mut size = vec![(1, 0); 2 * n];
    let mut col = vec![0; 2 * n];
    let mut present = (0..2 * n).collect::<HashSet<_>>();
    for i in (0..m).rev() {
        let (mut u, mut v) = edges[i];
        if dsu.get(u) == dsu.get(v) {
            continue;
        }
        let mut sw = col[u] == col[v];
        u = dsu.get(u);
        v = dsu.get(v);
        if sets[u].len() < sets[v].len() {
            swap(&mut u, &mut v);
        }
        let alt_u = if sw {
            let res = (size[u].0 + size[v].0, size[u].1 + size[v].1);
            size[u] = (size[u].0 + size[v].1, size[u].1 + size[v].0);
            res
        } else {
            let res = (size[u].0 + size[v].1, size[u].1 + size[v].0);
            size[u] = (size[u].0 + size[v].0, size[u].1 + size[v].1);
            res
        };
        let mut can_do = BitSet::new(n + 1);
        can_do.set(0);
        present.remove(&v);
        for &j in &present {
            let (x, y) = size[j];
            let mut with_x = can_do.clone();
            with_x <<= x;
            can_do <<= y;
            can_do |= &with_x;
        }
        if !can_do[n] {
            size[u] = alt_u;
            sw = !sw;
        }
        if sw {
            for &j in &sets[v] {
                col[j] ^= 1;
            }
        }
        let mut sv = Vec::new();
        swap(&mut sv, &mut sets[v]);
        sets[u].extend(sv);
        dsu.join(u, v);
        present.remove(&v);
    }
    let present = present.into_iter().collect::<Vec<_>>();
    let mut last = Arr2d::new(present.len() + 1, n + 1, None);
    last[(0, 0)] = Some(true);
    for (i, &j) in present.iter().enumerate() {
        let (x, y) = size[j];
        for j in 0..=n {
            if last[(i, j)].is_some() {
                if j + x <= n {
                    last[(i + 1, j + x)] = Some(false);
                }
                if j + y <= n {
                    last[(i + 1, j + y)] = Some(true);
                }
            }
        }
    }
    assert!(last[(present.len(), n)].is_some());
    let mut cur = n;
    for (i, &j) in present.iter().enumerate().rev() {
        if last[(i + 1, cur)].unwrap() {
            cur -= size[j].1;
            for &j in &sets[j] {
                col[j] ^= 1;
            }
        } else {
            cur -= size[j].0;
        }
    }
    for i in col {
        out.print(i);
    }
    out.print_line(());
}

pub static TEST_TYPE: TestType = TestType::Single;
pub static TASK_TYPE: TaskType = TaskType::Classic;

pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
    let mut pre_calc = ();

    match TEST_TYPE {
        TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
        TestType::MultiNumber => {
            let t = input.read();
            for i in 1..=t {
                solve(&mut input, &mut output, i, &mut pre_calc);
            }
        }
        TestType::MultiEof => {
            let mut i = 1;
            while input.peek().is_some() {
                solve(&mut input, &mut output, i, &mut pre_calc);
                i += 1;
            }
        }
    }
    output.flush();
    match TASK_TYPE {
        TaskType::Classic => {
            input.skip_whitespace();
            input.peek().is_none()
        }
        TaskType::Interactive => true,
    }
}

}
pub mod algo_lib {
pub mod collections {
pub mod bit_set {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::numbers::num_traits::bit_ops::BitOps;
use std::ops::BitAndAssign;
use std::ops::BitOrAssign;
use std::ops::Index;
use std::ops::ShlAssign;
use std::ops::ShrAssign;

const TRUE: bool = true;
const FALSE: bool = false;

#[derive(Clone, Eq, PartialEq, Hash)]
pub struct BitSet {
    data: Vec<u64>,
    len: usize,
}

impl BitSet {
    pub fn new(len: usize) -> Self {
        let data_len = if len == 0 {
            0
        } else {
            Self::index(len - 1) + 1
        };
        Self {
            data: vec![0; data_len],
            len,
        }
    }

    pub fn from_slice(len: usize, set: &[usize]) -> Self {
        let mut res = Self::new(len);
        for &i in set {
            res.set(i);
        }
        res
    }

    pub fn set(&mut self, at: usize) {
        assert!(at < self.len);
        self.data[Self::index(at)].set_bit(at & 63);
    }

    pub fn unset(&mut self, at: usize) {
        assert!(at < self.len);
        self.data[Self::index(at)].unset_bit(at & 63);
    }

    pub fn change(&mut self, at: usize, value: bool) {
        if value {
            self.set(at);
        } else {
            self.unset(at);
        }
    }

    pub fn flip(&mut self, at: usize) {
        self.change(at, !self[at]);
    }

    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.len
    }

    pub fn fill(&mut self, value: bool) {
        // 1.43
        self.data.legacy_fill(if value { std::u64::MAX } else { 0 });
        if value {
            self.fix_last();
        }
    }

    pub fn is_superset(&self, other: &Self) -> bool {
        assert_eq!(self.len, other.len);
        for i in 0..self.data.len() {
            if self.data[i] & other.data[i] != other.data[i] {
                return false;
            }
        }
        true
    }

    pub fn is_subset(&self, other: &Self) -> bool {
        other.is_superset(self)
    }

    pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
        self.into_iter()
    }

    fn index(at: usize) -> usize {
        at >> 6
    }

    pub fn count_ones(&self) -> usize {
        self.data.iter().map(|x| x.count_ones() as usize).sum()
    }

    fn fix_last(&mut self) {
        if self.len & 63 != 0 {
            let mask = (1 << (self.len & 63)) - 1;
            *self.data.last_mut().unwrap() &= mask;
        }
    }
}

pub struct BitSetIter<'s> {
    at: usize,
    inside: usize,
    set: &'s BitSet,
}

impl<'s> Iterator for BitSetIter<'s> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        while self.at < self.set.data.len()
            && (self.inside == 64 || (self.set.data[self.at] >> self.inside) == 0)
        {
            self.at += 1;
            self.inside = 0;
        }
        if self.at == self.set.data.len() {
            None
        } else {
            while !self.set.data[self.at].is_set(self.inside) {
                self.inside += 1;
            }
            let res = self.at * 64 + self.inside;
            if res < self.set.len {
                self.inside += 1;
                Some(res)
            } else {
                None
            }
        }
    }
}

impl<'a> IntoIterator for &'a BitSet {
    type Item = usize;
    type IntoIter = BitSetIter<'a>;

    fn into_iter(self) -> Self::IntoIter {
        BitSetIter {
            at: 0,
            inside: 0,
            set: self,
        }
    }
}

impl BitOrAssign<&BitSet> for BitSet {
    fn bitor_assign(&mut self, rhs: &BitSet) {
        assert_eq!(self.len, rhs.len);
        for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
            *i |= j;
        }
    }
}

impl BitAndAssign<&BitSet> for BitSet {
    fn bitand_assign(&mut self, rhs: &BitSet) {
        assert_eq!(self.len, rhs.len);
        for (i, &j) in self.data.iter_mut().zip(rhs.data.iter()) {
            *i &= j;
        }
    }
}

impl ShlAssign<usize> for BitSet {
    fn shl_assign(&mut self, rhs: usize) {
        if rhs == 0 {
            return;
        }
        let small_shift = rhs & 63;
        if small_shift != 0 {
            let mut carry = 0;
            for i in 0..self.data.len() {
                let new_carry = self.data[i] >> (64 - small_shift);
                self.data[i] <<= small_shift;
                self.data[i] |= carry;
                carry = new_carry;
            }
        }
        let big_shift = rhs >> 6;
        if big_shift != 0 {
            self.data.rotate_right(big_shift);
            self.data[..big_shift].fill(0);
        }
        self.fix_last();
    }
}

impl ShrAssign<usize> for BitSet {
    fn shr_assign(&mut self, rhs: usize) {
        if rhs == 0 {
            return;
        }
        let small_shift = rhs & 63;
        if small_shift != 0 {
            let mut carry = 0;
            for i in (0..self.data.len()).rev() {
                let new_carry = self.data[i] << (64 - small_shift);
                self.data[i] >>= small_shift;
                self.data[i] |= carry;
                carry = new_carry;
            }
        }
        let big_shift = rhs >> 6;
        if big_shift != 0 {
            self.data.rotate_left(big_shift);
            let from = self.data.len() - big_shift;
            self.data[from..].fill(0);
        }
    }
}

impl Index<usize> for BitSet {
    type Output = bool;

    fn index(&self, at: usize) -> &Self::Output {
        assert!(at < self.len);
        if self.data[Self::index(at)].is_set(at & 63) {
            &TRUE
        } else {
            &FALSE
        }
    }
}

impl From<Vec<bool>> for BitSet {
    fn from(data: Vec<bool>) -> Self {
        let mut res = Self::new(data.len());
        for (i, &value) in data.iter().enumerate() {
            res.change(i, value);
        }
        res
    }
}
}
pub mod dsu {
use crate::algo_lib::collections::iter_ext::collect::IterCollect;
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use std::cell::Cell;

#[derive(Clone)]
pub struct DSU {
    id: Vec<Cell<u32>>,
    size: Vec<u32>,
    count: usize,
}

impl DSU {
    pub fn new(n: usize) -> Self {
        Self {
            id: (0..n).map(|i| Cell::new(i as u32)).collect_vec(),
            size: vec![1; n],
            count: n,
        }
    }

    pub fn size(&self, i: usize) -> usize {
        self.size[self.get(i)] as usize
    }

    #[allow(clippy::len_without_is_empty)]
    pub fn len(&self) -> usize {
        self.id.len()
    }

    pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
        self.id.iter().enumerate().filter_map(|(i, id)| {
            if (i as u32) == id.get() {
                Some(i)
            } else {
                None
            }
        })
    }

    pub fn set_count(&self) -> usize {
        self.count
    }

    pub fn join(&mut self, mut a: usize, mut b: usize) -> bool {
        a = self.get(a);
        b = self.get(b);
        if a == b {
            false
        } else {
            self.size[a] += self.size[b];
            self.id[b].replace(a as u32);
            self.count -= 1;
            true
        }
    }

    pub fn get(&self, i: usize) -> usize {
        if self.id[i].get() != i as u32 {
            let res = self.get(self.id[i].get() as usize);
            self.id[i].replace(res as u32);
        }
        self.id[i].get() as usize
    }

    pub fn clear(&mut self) {
        self.count = self.id.len();
        self.size.legacy_fill(1);
        self.id.iter().enumerate().for_each(|(i, id)| {
            id.replace(i as u32);
        });
    }

    pub fn parts(&self) -> Vec<Vec<usize>> {
        let roots = self.iter().collect_vec();
        let mut res = vec![Vec::new(); roots.len()];
        for i in 0..self.id.len() {
            res[roots.as_slice().bin_search(&self.get(i)).unwrap()].push(i);
        }
        res
    }
}
}
pub mod iter_ext {
pub mod collect {
pub trait IterCollect<T>: Iterator<Item = T> + Sized {
    fn collect_vec(self) -> Vec<T> {
        self.collect()
    }
}

impl<T, I: Iterator<Item = T> + Sized> IterCollect<T> for I {}
}
}
pub mod md_arr {
pub mod arr2d {
use crate::algo_lib::collections::slice_ext::legacy_fill::LegacyFill;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::input::Readable;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::io::output::Writable;
use std::ops::Index;
use std::ops::IndexMut;
use std::ops::Range;
use std::slice::Iter;
use std::vec::IntoIter;

#[derive(Clone, Eq, PartialEq, Default)]
pub struct Arr2d<T> {
    d1: usize,
    d2: usize,
    data: Vec<T>,
}

impl<T: Clone> Arr2d<T> {
    pub fn new(d1: usize, d2: usize, value: T) -> Self {
        Self {
            d1,
            d2,
            data: vec![value; d1 * d2],
        }
    }
}

impl<T> Arr2d<T> {
    pub fn generate<F>(d1: usize, d2: usize, mut gen: F) -> Self
    where
        F: FnMut(usize, usize) -> T,
    {
        let mut data = Vec::with_capacity(d1 * d2);
        for i in 0usize..d1 {
            for j in 0usize..d2 {
                data.push(gen(i, j));
            }
        }
        Self { d1, d2, data }
    }

    pub fn d1(&self) -> usize {
        self.d1
    }

    pub fn d2(&self) -> usize {
        self.d2
    }

    pub fn iter(&self) -> Iter<'_, T> {
        self.data.iter()
    }

    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut T> {
        self.data.iter_mut()
    }

    pub fn row(&self, row: usize) -> impl Iterator<Item = &T> {
        assert!(row < self.d1);
        self.data.iter().skip(row * self.d2).take(self.d2)
    }

    pub fn row_mut(&mut self, row: usize) -> impl Iterator<Item = &mut T> {
        assert!(row < self.d1);
        self.data.iter_mut().skip(row * self.d2).take(self.d2)
    }

    pub fn column(&self, col: usize) -> impl Iterator<Item = &T> {
        assert!(col < self.d2);
        self.data.iter().skip(col).step_by(self.d2)
    }

    pub fn column_mut(&mut self, col: usize) -> impl Iterator<Item = &mut T> {
        assert!(col < self.d2);
        self.data.iter_mut().skip(col).step_by(self.d2)
    }

    pub fn swap(&mut self, r1: usize, c1: usize, r2: usize, c2: usize) {
        assert!(r1 < self.d1);
        assert!(r2 < self.d1);
        assert!(c1 < self.d2);
        assert!(c2 < self.d2);
        self.data.swap(r1 * self.d2 + c1, r2 * self.d2 + c2);
    }

    pub fn rows(&self) -> Range<usize> {
        0..self.d1
    }

    pub fn cols(&self) -> Range<usize> {
        0..self.d2
    }

    pub fn swap_rows(&mut self, r1: usize, r2: usize) {
        assert!(r1 < self.d1);
        assert!(r2 < self.d1);
        if r1 == r2 {
            return;
        }
        let (r1, r2) = (r1.min(r2), r1.max(r2));
        let (head, tail) = self.data.split_at_mut(r2 * self.d2);
        head[r1 * self.d2..(r1 + 1) * self.d2].swap_with_slice(&mut tail[..self.d2]);
    }
}

impl<T: Clone> Arr2d<T> {
    pub fn fill(&mut self, elem: T) {
        self.data.legacy_fill(elem);
    }

    pub fn transpose(&self) -> Self {
        Self::generate(self.d2, self.d1, |i, j| self[(j, i)].clone())
    }
}

impl<T> Index<(usize, usize)> for Arr2d<T> {
    type Output = T;

    fn index(&self, (row, col): (usize, usize)) -> &Self::Output {
        assert!(row < self.d1);
        assert!(col < self.d2);
        &self.data[self.d2 * row + col]
    }
}

impl<T> Index<usize> for Arr2d<T> {
    type Output = [T];

    fn index(&self, index: usize) -> &Self::Output {
        &self.data[self.d2 * index..self.d2 * (index + 1)]
    }
}

impl<T> IndexMut<(usize, usize)> for Arr2d<T> {
    fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut T {
        assert!(row < self.d1);
        assert!(col < self.d2);
        &mut self.data[self.d2 * row + col]
    }
}

impl<T> IndexMut<usize> for Arr2d<T> {
    fn index_mut(&mut self, index: usize) -> &mut [T] {
        &mut self.data[self.d2 * index..self.d2 * (index + 1)]
    }
}

impl<T> AsRef<Vec<T>> for Arr2d<T> {
    fn as_ref(&self) -> &Vec<T> {
        &self.data
    }
}

impl<T> AsMut<Vec<T>> for Arr2d<T> {
    fn as_mut(&mut self) -> &mut Vec<T> {
        &mut self.data
    }
}

impl<T: Writable> Writable for Arr2d<T> {
    fn write(&self, output: &mut Output) {
        let mut at = 0usize;
        for i in 0usize..self.d1 {
            if i != 0 {
                output.put(b'\n');
            }
            for j in 0usize..self.d2 {
                if j != 0 {
                    output.put(b' ');
                }
                self.data[at].write(output);
                at += 1;
            }
        }
    }
}

impl<T> IntoIterator for Arr2d<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.data.into_iter()
    }
}

impl<'a, T> IntoIterator for &'a Arr2d<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

pub trait Arr2dRead {
    fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T>;
    fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32>;
    fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64>;
    fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize>;
    fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char>;
}

impl Arr2dRead for Input<'_> {
    fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T> {
        Arr2d::generate(d1, d2, |_, _| self.read())
    }

    fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32> {
        self.read_table(d1, d2)
    }

    fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64> {
        self.read_table(d1, d2)
    }

    fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize> {
        self.read_table(d1, d2)
    }

    fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<char> {
        self.read_table(d1, d2)
    }
}

pub trait Arr2dCharWrite {
    fn print_table(&mut self, table: &Arr2d<char>);
}

impl Arr2dCharWrite for Output<'_> {
    fn print_table(&mut self, table: &Arr2d<char>) {
        let mut at = 0usize;
        for _ in 0..table.d1 {
            for _ in 0..table.d2 {
                self.print(table.data[at]);
                at += 1;
            }
            self.put(b'\n');
        }
    }
}

impl<T: Readable> Readable for Arr2d<T> {
    fn read(input: &mut Input) -> Self {
        let d1 = input.read();
        let d2 = input.read();
        input.read_table(d1, d2)
    }
}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
    fn lower_bound(&self, el: &T) -> usize;
    fn upper_bound(&self, el: &T) -> usize;
    fn bin_search(&self, el: &T) -> Option<usize>;
    fn more(&self, el: &T) -> usize;
    fn more_or_eq(&self, el: &T) -> usize;
    fn less(&self, el: &T) -> usize;
    fn less_or_eq(&self, el: &T) -> usize;
}

impl<T: PartialOrd> Bounds<T> for [T] {
    fn lower_bound(&self, el: &T) -> usize {
        let mut left = 0;
        let mut right = self.len();
        while left < right {
            let mid = left + ((right - left) >> 1);
            if &self[mid] < el {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        left
    }

    fn upper_bound(&self, el: &T) -> usize {
        let mut left = 0;
        let mut right = self.len();
        while left < right {
            let mid = left + ((right - left) >> 1);
            if &self[mid] <= el {
                left = mid + 1;
            } else {
                right = mid;
            }
        }
        left
    }

    fn bin_search(&self, el: &T) -> Option<usize> {
        let at = self.lower_bound(el);
        if at == self.len() || &self[at] != el {
            None
        } else {
            Some(at)
        }
    }

    fn more(&self, el: &T) -> usize {
        self.len() - self.upper_bound(el)
    }

    fn more_or_eq(&self, el: &T) -> usize {
        self.len() - self.lower_bound(el)
    }

    fn less(&self, el: &T) -> usize {
        self.lower_bound(el)
    }

    fn less_or_eq(&self, el: &T) -> usize {
        self.upper_bound(el)
    }
}
}
pub mod legacy_fill {
// 1.50
pub trait LegacyFill<T> {
    fn legacy_fill(&mut self, val: T);
}

impl<T: Clone> LegacyFill<T> for [T] {
    fn legacy_fill(&mut self, val: T) {
        for el in self.iter_mut() {
            *el = val.clone();
        }
    }
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
    let mut v = Vec::with_capacity(len);
    for _ in 0..len {
        v.push(T::default());
    }
    v
}
}
pub mod inc_dec {
use crate::algo_lib::numbers::num_traits::algebra::AdditionMonoidWithSub;
use crate::algo_lib::numbers::num_traits::algebra::One;

pub trait IncDec {
    #[must_use]
    fn inc(self) -> Self;
    #[must_use]
    fn dec(self) -> Self;
}

impl<T: AdditionMonoidWithSub + One> IncDec for T {
    fn inc(self) -> Self {
        self + T::one()
    }

    fn dec(self) -> Self {
        self - T::one()
    }
}

impl<T: AdditionMonoidWithSub + One> IncDec for Vec<T> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|i| *i += T::one());
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|i| *i -= T::one());
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for Vec<(T, U)> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V> IncDec for Vec<(T, U, V)> {
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, _)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, _)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W> IncDec
    for Vec<(T, U, V, W)>
{
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W, X> IncDec
    for Vec<(T, U, V, W, X)>
{
    fn inc(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i += T::one();
            *j += U::one();
        });
        self
    }

    fn dec(mut self) -> Self {
        self.iter_mut().for_each(|(i, j, ..)| {
            *i -= T::one();
            *j -= U::one();
        });
        self
    }
}

impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for (T, U) {
    fn inc(mut self) -> Self {
        self.0 += T::one();
        self.1 += U::one();
        self
    }

    fn dec(mut self) -> Self {
        self.0 -= T::one();
        self.1 -= U::one();
        self
    }
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;

pub struct Input<'s> {
    input: &'s mut dyn Read,
    buf: Vec<u8>,
    at: usize,
    buf_read: usize,
}

macro_rules! read_impl {
    ($t: ty, $read_name: ident, $read_vec_name: ident) => {
        pub fn $read_name(&mut self) -> $t {
            self.read()
        }

        pub fn $read_vec_name(&mut self, len: usize) -> Vec<$t> {
            self.read_vec(len)
        }
    };

    ($t: ty, $read_name: ident, $read_vec_name: ident, $read_pair_vec_name: ident) => {
        read_impl!($t, $read_name, $read_vec_name);

        pub fn $read_pair_vec_name(&mut self, len: usize) -> Vec<($t, $t)> {
            self.read_vec(len)
        }
    };
}

impl<'s> Input<'s> {
    const DEFAULT_BUF_SIZE: usize = 4096;

    pub fn new(input: &'s mut dyn Read) -> Self {
        Self {
            input,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            buf_read: 0,
        }
    }

    pub fn new_with_size(input: &'s mut dyn Read, buf_size: usize) -> Self {
        Self {
            input,
            buf: default_vec(buf_size),
            at: 0,
            buf_read: 0,
        }
    }

    pub fn get(&mut self) -> Option<u8> {
        if self.refill_buffer() {
            let res = self.buf[self.at];
            self.at += 1;
            if res == b'\r' {
                if self.refill_buffer() && self.buf[self.at] == b'\n' {
                    self.at += 1;
                }
                return Some(b'\n');
            }
            Some(res)
        } else {
            None
        }
    }

    pub fn peek(&mut self) -> Option<u8> {
        if self.refill_buffer() {
            let res = self.buf[self.at];
            Some(if res == b'\r' { b'\n' } else { res })
        } else {
            None
        }
    }

    pub fn skip_whitespace(&mut self) {
        while let Some(b) = self.peek() {
            if !b.is_ascii_whitespace() {
                return;
            }
            self.get();
        }
    }

    pub fn next_token(&mut self) -> Option<Vec<u8>> {
        self.skip_whitespace();
        let mut res = Vec::new();
        while let Some(c) = self.get() {
            if c.is_ascii_whitespace() {
                break;
            }
            res.push(c);
        }
        if res.is_empty() {
            None
        } else {
            Some(res)
        }
    }

    //noinspection RsSelfConvention
    pub fn is_exhausted(&mut self) -> bool {
        self.peek().is_none()
    }

    //noinspection RsSelfConvention
    pub fn is_empty(&mut self) -> bool {
        self.skip_whitespace();
        self.is_exhausted()
    }

    pub fn read<T: Readable>(&mut self) -> T {
        T::read(self)
    }

    pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
        let mut res = Vec::with_capacity(size);
        for _ in 0..size {
            res.push(self.read());
        }
        res
    }

    pub fn read_char(&mut self) -> char {
        self.skip_whitespace();
        self.get().unwrap().into()
    }

    read_impl!(u32, read_unsigned, read_unsigned_vec);
    read_impl!(u64, read_u64, read_u64_vec);
    read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
    read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
    read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
    read_impl!(i128, read_i128, read_i128_vec);

    fn refill_buffer(&mut self) -> bool {
        if self.at == self.buf_read {
            self.at = 0;
            self.buf_read = self.input.read(&mut self.buf).unwrap();
            self.buf_read != 0
        } else {
            true
        }
    }
}

pub trait Readable {
    fn read(input: &mut Input) -> Self;
}

impl Readable for char {
    fn read(input: &mut Input) -> Self {
        input.read_char()
    }
}

impl<T: Readable> Readable for Vec<T> {
    fn read(input: &mut Input) -> Self {
        let size = input.read();
        input.read_vec(size)
    }
}

macro_rules! read_integer {
    ($($t:ident)+) => {$(
        impl Readable for $t {
            fn read(input: &mut Input) -> Self {
                input.skip_whitespace();
                let mut c = input.get().unwrap();
                let sgn = match c {
                    b'-' => {
                        c = input.get().unwrap();
                        true
                    }
                    b'+' => {
                        c = input.get().unwrap();
                        false
                    }
                    _ => false,
                };
                let mut res = 0;
                loop {
                    assert!(c.is_ascii_digit());
                    res *= 10;
                    let d = (c - b'0') as $t;
                    if sgn {
                        res -= d;
                    } else {
                        res += d;
                    }
                    match input.get() {
                        None => break,
                        Some(ch) => {
                            if ch.is_ascii_whitespace() {
                                break;
                            } else {
                                c = ch;
                            }
                        }
                    }
                }
                res
            }
        }
    )+};
}

read_integer!(i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize);

macro_rules! tuple_readable {
    ($($name:ident)+) => {
        impl<$($name: Readable), +> Readable for ($($name,)+) {
            fn read(input: &mut Input) -> Self {
                ($($name::read(input),)+)
            }
        }
    }
}

tuple_readable! {T}
tuple_readable! {T U}
tuple_readable! {T U V}
tuple_readable! {T U V X}
tuple_readable! {T U V X Y}
tuple_readable! {T U V X Y Z}
tuple_readable! {T U V X Y Z A}
tuple_readable! {T U V X Y Z A B}
tuple_readable! {T U V X Y Z A B C}
tuple_readable! {T U V X Y Z A B C D}
tuple_readable! {T U V X Y Z A B C D E}
tuple_readable! {T U V X Y Z A B C D E F}

impl Read for Input<'_> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        if self.at == self.buf_read {
            self.input.read(buf)
        } else {
            let mut i = 0;
            while i < buf.len() && self.at < self.buf_read {
                buf[i] = self.buf[self.at];
                i += 1;
                self.at += 1;
            }
            Ok(i)
        }
    }
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::stderr;
use std::io::Stderr;
use std::io::Write;

#[derive(Copy, Clone)]
pub enum BoolOutput {
    YesNo,
    YesNoCaps,
    PossibleImpossible,
    Custom(&'static str, &'static str),
}

impl BoolOutput {
    pub fn output(&self, output: &mut Output, val: bool) {
        (if val { self.yes() } else { self.no() }).write(output);
    }

    fn yes(&self) -> &str {
        match self {
            BoolOutput::YesNo => "Yes",
            BoolOutput::YesNoCaps => "YES",
            BoolOutput::PossibleImpossible => "Possible",
            BoolOutput::Custom(yes, _) => yes,
        }
    }

    fn no(&self) -> &str {
        match self {
            BoolOutput::YesNo => "No",
            BoolOutput::YesNoCaps => "NO",
            BoolOutput::PossibleImpossible => "Impossible",
            BoolOutput::Custom(_, no) => no,
        }
    }
}

pub struct Output<'s> {
    output: &'s mut dyn Write,
    buf: Vec<u8>,
    at: usize,
    auto_flush: bool,
    bool_output: BoolOutput,
}

impl<'s> Output<'s> {
    const DEFAULT_BUF_SIZE: usize = 4096;

    pub fn new(output: &'s mut dyn Write) -> Self {
        Self {
            output,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            auto_flush: false,
            bool_output: BoolOutput::YesNoCaps,
        }
    }

    pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
        Self {
            output,
            buf: default_vec(Self::DEFAULT_BUF_SIZE),
            at: 0,
            auto_flush: true,
            bool_output: BoolOutput::YesNoCaps,
        }
    }

    pub fn flush(&mut self) {
        if self.at != 0 {
            self.output.write_all(&self.buf[..self.at]).unwrap();
            self.output.flush().unwrap();
            self.at = 0;
        }
    }

    pub fn print<T: Writable>(&mut self, s: T) {
        s.write(self);
        self.maybe_flush();
    }

    pub fn print_line<T: Writable>(&mut self, s: T) {
        self.print(s);
        self.put(b'\n');
        self.maybe_flush();
    }

    pub fn put(&mut self, b: u8) {
        self.buf[self.at] = b;
        self.at += 1;
        if self.at == self.buf.len() {
            self.flush();
        }
    }

    pub fn maybe_flush(&mut self) {
        if self.auto_flush {
            self.flush();
        }
    }

    pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
        self.print_per_line_iter(arg.iter());
    }

    pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        let mut first = true;
        for e in iter {
            if first {
                first = false;
            } else {
                self.put(b' ');
            }
            e.write(self);
        }
    }

    pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        self.print_iter(iter);
        self.put(b'\n');
    }

    pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
        for e in iter {
            e.write(self);
            self.put(b'\n');
        }
    }

    pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
        self.bool_output = bool_output;
    }
}

impl Write for Output<'_> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        let mut start = 0usize;
        let mut rem = buf.len();
        while rem > 0 {
            let len = (self.buf.len() - self.at).min(rem);
            self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
            self.at += len;
            if self.at == self.buf.len() {
                self.flush();
            }
            start += len;
            rem -= len;
        }
        self.maybe_flush();
        Ok(buf.len())
    }

    fn flush(&mut self) -> std::io::Result<()> {
        self.flush();
        Ok(())
    }
}

pub trait Writable {
    fn write(&self, output: &mut Output);
}

impl Writable for &str {
    fn write(&self, output: &mut Output) {
        output.write_all(self.as_bytes()).unwrap();
    }
}

impl Writable for String {
    fn write(&self, output: &mut Output) {
        output.write_all(self.as_bytes()).unwrap();
    }
}

impl Writable for char {
    fn write(&self, output: &mut Output) {
        output.put(*self as u8);
    }
}

impl<T: Writable> Writable for [T] {
    fn write(&self, output: &mut Output) {
        output.print_iter(self.iter());
    }
}

impl<T: Writable, const N: usize> Writable for [T; N] {
    fn write(&self, output: &mut Output) {
        output.print_iter(self.iter());
    }
}

impl<T: Writable + ?Sized> Writable for &T {
    fn write(&self, output: &mut Output) {
        T::write(self, output)
    }
}

impl<T: Writable> Writable for Vec<T> {
    fn write(&self, output: &mut Output) {
        self.as_slice().write(output);
    }
}

impl Writable for () {
    fn write(&self, _output: &mut Output) {}
}

macro_rules! write_to_string {
    ($($t:ident)+) => {$(
        impl Writable for $t {
            fn write(&self, output: &mut Output) {
                self.to_string().write(output);
            }
        }
    )+};
}

write_to_string!(u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);

macro_rules! tuple_writable {
    ($name0:ident $($name:ident: $id:tt )*) => {
        impl<$name0: Writable, $($name: Writable,)*> Writable for ($name0, $($name,)*) {
            fn write(&self, out: &mut Output) {
                self.0.write(out);
                $(
                out.put(b' ');
                self.$id.write(out);
                )*
            }
        }
    }
}

tuple_writable! {T}
tuple_writable! {T U:1}
tuple_writable! {T U:1 V:2}
tuple_writable! {T U:1 V:2 X:3}
tuple_writable! {T U:1 V:2 X:3 Y:4}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7}
tuple_writable! {T U:1 V:2 X:3 Y:4 Z:5 A:6 B:7 C:8}

impl<T: Writable> Writable for Option<T> {
    fn write(&self, output: &mut Output) {
        match self {
            None => (-1).write(output),
            Some(t) => t.write(output),
        }
    }
}

impl Writable for bool {
    fn write(&self, output: &mut Output) {
        let bool_output = output.bool_output;
        bool_output.output(output, *self)
    }
}

impl<T: Writable> Writable for Reverse<T> {
    fn write(&self, output: &mut Output) {
        self.0.write(output);
    }
}

static mut ERR: Option<Stderr> = None;

pub fn err() -> Output<'static> {
    unsafe {
        if ERR.is_none() {
            ERR = Some(stderr());
        }
        Output::new_with_auto_flush(ERR.as_mut().unwrap())
    }
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
    Single,
    MultiNumber,
    MultiEof,
}

pub enum TaskType {
    Classic,
    Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::Add;
use std::ops::AddAssign;
use std::ops::Div;
use std::ops::DivAssign;
use std::ops::Mul;
use std::ops::MulAssign;
use std::ops::Neg;
use std::ops::Rem;
use std::ops::RemAssign;
use std::ops::Sub;
use std::ops::SubAssign;

pub trait Zero {
    fn zero() -> Self;
}

pub trait One {
    fn one() -> Self;
}

pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}

impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}

pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}

impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}

pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}

impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}

pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}

impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}

pub trait IntegerMultiplicationMonoid:
    MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign + RemAssign>
    IntegerMultiplicationMonoid for T
{
}

pub trait MultiplicationGroup:
    MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>
{
}

impl<T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>>
    MultiplicationGroup for T
{
}

pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}

impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}

pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}

impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}

pub trait Ring: SemiRing + AdditionGroup {}

impl<T: SemiRing + AdditionGroup> Ring for T {}

pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}

impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}

pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}

impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}

pub trait IntegerRing: IntegerSemiRing + Ring {}

impl<T: IntegerSemiRing + Ring> IntegerRing for T {}

pub trait Field: Ring + MultiplicationGroup {}

impl<T: Ring + MultiplicationGroup> Field for T {}

macro_rules! zero_one_integer_impl {
    ($($t: ident)+) => {$(
        impl Zero for $t {
            fn zero() -> Self {
                0
            }
        }

        impl One for $t {
            fn one() -> Self {
                1
            }
        }
    )+};
}

zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod bit_ops {
use crate::algo_lib::numbers::num_traits::algebra::One;
use crate::algo_lib::numbers::num_traits::algebra::Zero;
use std::ops::BitAnd;
use std::ops::BitAndAssign;
use std::ops::BitOr;
use std::ops::BitOrAssign;
use std::ops::BitXor;
use std::ops::BitXorAssign;
use std::ops::Not;
use std::ops::RangeInclusive;
use std::ops::Shl;
use std::ops::ShlAssign;
use std::ops::Shr;
use std::ops::ShrAssign;

pub trait BitOps:
    Copy
    + BitAnd<Output = Self>
    + BitAndAssign
    + BitOr<Output = Self>
    + BitOrAssign
    + BitXor<Output = Self>
    + BitXorAssign
    + Not<Output = Self>
    + Shl<usize, Output = Self>
    + ShlAssign<usize>
    + Shr<usize, Output = Self>
    + ShrAssign<usize>
    + Zero
    + One
    + PartialEq
{
    fn bit(at: usize) -> Self {
        Self::one() << at
    }

    fn is_set(&self, at: usize) -> bool {
        (*self >> at & Self::one()) == Self::one()
    }

    fn set_bit(&mut self, at: usize) {
        *self |= Self::bit(at)
    }

    fn unset_bit(&mut self, at: usize) {
        *self &= !Self::bit(at)
    }

    #[must_use]
    fn with_bit(mut self, at: usize) -> Self {
        self.set_bit(at);
        self
    }

    #[must_use]
    fn without_bit(mut self, at: usize) -> Self {
        self.unset_bit(at);
        self
    }

    fn flip_bit(&mut self, at: usize) {
        *self ^= Self::bit(at)
    }

    fn all_bits(n: usize) -> Self {
        let mut res = Self::zero();
        for i in 0..n {
            res.set_bit(i);
        }
        res
    }

    fn iter_all(n: usize) -> RangeInclusive<Self> {
        Self::zero()..=Self::all_bits(n)
    }
}

impl<
        T: Copy
            + BitAnd<Output = Self>
            + BitAndAssign
            + BitOr<Output = Self>
            + BitOrAssign
            + BitXor<Output = Self>
            + BitXorAssign
            + Not<Output = Self>
            + Shl<usize, Output = Self>
            + ShlAssign<usize>
            + Shr<usize, Output = Self>
            + ShrAssign<usize>
            + One
            + Zero
            + PartialEq,
    > BitOps for T
{
}

pub trait Bits: BitOps {
    fn bits() -> u32;
}

macro_rules! bits_integer_impl {
    ($($t: ident $bits: expr),+) => {$(
        impl Bits for $t {
            fn bits() -> u32 {
                $bits
            }
        }
    )+};
}

bits_integer_impl!(i128 128, i64 64, i32 32, i16 16, i8 8, isize 64, u128 128, u64 64, u32 32, u16 16, u8 8, usize 64);
}
pub mod invertible {
pub trait Invertible {
    type Output;

    fn inv(&self) -> Option<Self::Output>;
}
}
}
}
}
fn main() {
    let mut sin = std::io::stdin();
    let input = algo_lib::io::input::Input::new(&mut sin);
    let mut stdout = std::io::stdout();
    let output = algo_lib::io::output::Output::new(&mut stdout);
    solution::run(input, output);
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 2300kb

input:

2 4
1 3
2 4
1 4
1 2

output:

1010

result:

ok Output is valid. OK

Test #2:

score: 0
Accepted
time: 0ms
memory: 2128kb

input:

3 7
2 5
1 3
4 6
2 6
4 5
2 4
5 6

output:

110010

result:

ok Output is valid. OK

Test #3:

score: 0
Accepted
time: 0ms
memory: 2304kb

input:

1 0

output:

10

result:

ok Output is valid. OK

Test #4:

score: 0
Accepted
time: 0ms
memory: 2112kb

input:

1 1
1 2

output:

10

result:

ok Output is valid. OK

Test #5:

score: 0
Accepted
time: 0ms
memory: 2176kb

input:

2 3
2 4
3 4
1 2

output:

1001

result:

ok Output is valid. OK

Test #6:

score: 0
Accepted
time: 0ms
memory: 2236kb

input:

3 8
4 6
3 5
1 4
2 4
1 6
1 2
3 4
4 5

output:

101010

result:

ok Output is valid. OK

Test #7:

score: 0
Accepted
time: 0ms
memory: 2024kb

input:

4 9
4 7
3 8
1 5
2 7
2 8
6 8
7 8
1 4
1 6

output:

10101001

result:

ok Output is valid. OK

Test #8:

score: 0
Accepted
time: 0ms
memory: 2160kb

input:

5 16
3 6
9 10
2 7
1 10
1 5
2 10
3 5
5 6
3 4
2 5
4 5
3 8
4 7
6 8
1 6
7 10

output:

0010111010

result:

ok Output is valid. OK

Test #9:

score: 0
Accepted
time: 0ms
memory: 2304kb

input:

6 13
4 5
2 9
3 8
4 8
4 11
10 12
3 4
3 9
5 11
2 8
5 10
5 8
1 11

output:

001001110110

result:

ok Output is valid. OK

Test #10:

score: 0
Accepted
time: 0ms
memory: 2160kb

input:

12 153
1 24
16 18
7 14
1 16
20 21
9 14
21 22
4 5
17 24
4 12
5 17
13 24
14 15
12 23
12 16
8 11
14 24
9 16
2 5
6 19
11 17
4 22
4 7
6 16
7 20
8 15
5 24
2 10
10 21
21 24
1 12
11 19
18 21
18 24
12 17
13 22
7 9
13 23
4 9
11 13
15 21
5 7
2 4
15 16
17 19
11 16
11 20
7 8
4 15
13 14
6 18
2 19
9 13
23 24
4 21
...

output:

111100011001101110000001

result:

ok Output is valid. OK

Test #11:

score: 0
Accepted
time: 5ms
memory: 2512kb

input:

259 33757
472 500
65 336
138 469
307 442
427 458
43 239
17 508
460 466
108 393
79 92
250 483
44 277
17 132
35 57
155 499
184 474
246 272
274 418
457 458
338 372
196 514
31 208
117 187
90 229
153 284
189 355
16 337
146 456
269 271
279 412
305 336
303 441
399 472
85 286
91 97
157 437
137 379
71 360
27...

output:

111000110010111001101110000111000000011111100010101100100010001110101101111110000111000101111100010110101110111100011010101100111010010011101010011010011010011101100111001011110001100111000010101011100110110001001010010010101010010110011001100001010110000100001110101110000010110001010010000110110011...

result:

ok Output is valid. OK

Test #12:

score: 0
Accepted
time: 44ms
memory: 6360kb

input:

811 265557
217 1153
383 1609
165 177
612 1602
1057 1428
37 436
135 1200
368 684
448 722
145 1583
325 1052
246 480
74 148
122 1111
1256 1327
304 1070
1285 1542
802 813
454 1563
265 1193
94 848
432 1156
429 1194
427 1230
1152 1406
1329 1355
702 845
591 1232
877 1288
1257 1549
340 659
1080 1333
910 137...

output:

110111111101000111011111111101011110100101000101001000000001111000101111010100100101110100110101000111110100111100100110111110100101110101111100011110101010011001101010100110010011011111011011110101111111011000001100001101110111111110100010011100011110111111010001011111110110011111100001010011011101...

result:

ok Output is valid. OK

Test #13:

score: 0
Accepted
time: 229ms
memory: 7596kb

input:

1691 323743
1246 2397
1445 2647
2010 2806
2001 2896
802 2258
2679 2976
2203 2875
2445 2698
137 3004
536 1800
2316 2520
594 1517
279 1558
1934 2871
57 1358
357 976
1764 2672
869 2137
1694 2201
491 1906
1177 1414
1304 1377
2454 2653
626 2637
1425 1677
620 876
1326 2085
404 874
626 1565
136 597
2885 31...

output:

111010001000000110110000100100010011101101011001011100101110000011100010001111000001000010100101111010111000111000110011100100110000110001001101110010110111110110110010100101010101000100100010111001011011111110010011000011110101000111011010010110101011011001001110100100110001100101111100111011101010...

result:

ok Output is valid. OK

Test #14:

score: 0
Accepted
time: 792ms
memory: 7336kb

input:

2891 285302
2273 3206
2376 4737
1075 5673
2493 5453
548 1902
603 1376
1948 2985
108 4730
2172 2948
947 1758
762 1558
2813 5701
2287 3502
297 1501
568 4247
4569 5071
832 3005
412 4226
1813 4519
726 3017
1658 3990
1771 3230
1705 2149
765 4782
5420 5652
3089 4727
4362 5054
1578 3729
1111 5740
2234 5691...

output:

001110110111111001100111000010110001001000011010100001010110101011011111011011111000101110011000000001111010101010010001000111101110110100111011001111111000110010101000000110100011111110110001010000001010101000111000111111111010100111001010100001110100011110111111111010100110110001110011110111001110...

result:

ok Output is valid. OK

Test #15:

score: 0
Accepted
time: 2390ms
memory: 14308kb

input:

4413 717147
1990 3721
2169 8724
2894 5350
4689 5732
274 3456
3149 5664
463 6517
3482 7460
1820 5440
2995 6364
5476 7590
5989 8692
4286 7015
7520 8630
524 7821
3335 7017
1491 4477
6238 8230
6339 8087
565 8666
6188 6930
4280 7015
4393 8825
3686 6189
3711 6905
888 1997
2488 8544
9 3914
5135 5322
2778 6...

output:

101101100111010000110001100011010100101110101111100111111001010100010110110001010001100100001010011100001001011011100110011000000101000011111100011001101011101100001010111001111101110001011100001011101001101000011100110101011100101110110010100010111111110011011011010101001000000111100101110110001111...

result:

ok Output is valid. OK

Test #16:

score: 0
Accepted
time: 61ms
memory: 17740kb

input:

707 998991
16 83
733 1195
318 945
9 385
764 1338
396 833
408 1331
541 1405
167 1351
572 838
16 334
36 1071
765 873
445 930
48 168
857 1306
1066 1408
270 720
116 698
737 1136
460 1074
585 1195
492 690
1103 1122
698 1239
623 1355
30 140
952 1088
776 1138
71 525
690 1194
357 1062
366 632
46 744
312 520...

output:

001001101001101110110010001111111000001010101110011101010101101110010100110001100001010010011011110010101110110010111100101010110010110101001101010010110001000110111111101000101011111011100100100101010010001010000111011110010111111111110110000000111101001100001111011000101001001001111111101100010011...

result:

ok Output is valid. OK

Test #17:

score: 0
Accepted
time: 82ms
memory: 51600kb

input:

5000 0

output:

101110001001100101001000110010011100001010110000011000001011001100110011100101100110110001100011101001010111100000010100000001100111001100111010010000101101100110001011011011111011100010000001001100010010110111110111101100111000101101100101110110001001000000111101111010101000010111000110000011101011...

result:

ok Output is valid. OK

Test #18:

score: 0
Accepted
time: 78ms
memory: 51868kb

input:

5000 1
5104 7449

output:

101001111010011100110010011111100111100110001010011010010010001011000010101001011111011100110010100111010010010000010110101000100011111011110011000011001001110010111100011001101100111110001111110001100101000100011111010011000101100000000111100000001000010000010011000100110111000010010100111001011011...

result:

ok Output is valid. OK

Test #19:

score: 0
Accepted
time: 93ms
memory: 51672kb

input:

5000 13
8215 9259
4067 7015
4171 6513
1958 9790
5814 6551
711 3995
4392 8567
224 285
4618 4637
2864 8137
1910 2618
1881 5086
5503 9167

output:

001111011001001010010001110111110011100011000000100100001010001010100110011100001100111111011111100001010011110101010001010100001111011111000111011100101001010001111101010011100000111011101011101011110000111100111101111011111001001000011110100101100011110001110101000010110000100111000100011000100100...

result:

ok Output is valid. OK

Test #20:

score: 0
Accepted
time: 118ms
memory: 51332kb

input:

5000 55
7866 9685
3869 9188
3142 5921
1328 5189
1186 4841
2865 4732
5504 5634
983 5412
6630 7625
6123 9142
2937 5558
1344 5103
5443 9618
3579 6083
1044 3407
1028 6125
2895 5649
2986 3484
3659 6044
5673 7508
276 5982
694 4033
1089 6272
2661 2831
6962 9163
2717 8822
4363 5916
249 8966
9331 9920
1551 2...

output:

001001101001011111011110001010000100000101111111111001010100110110101111110011000001100001110111011100010110000110010110111101110100111111011100001000011011101110100111011110111110111000100111111011010111011110111101101100010101110110000100000011101101001001010000000001101001101010011000101001101011...

result:

ok Output is valid. OK

Test #21:

score: 0
Accepted
time: 2762ms
memory: 27544kb

input:

5000 5000
4509 6534
1710 4635
1694 2754
3105 5501
6490 6786
4306 6866
483 6111
9513 9773
217 5738
4794 5634
2466 9426
4015 6665
596 4471
1608 8259
5463 5568
5672 5975
5791 6415
150 3738
487 9066
4093 6191
534 3270
2444 5041
4873 7509
6286 7749
3655 5175
414 9604
4068 9379
884 3731
3797 5637
6712 752...

output:

111111111111111111111111111111111111111111111111111111111111111111111111111111111111110111111111111111111111111111111111111111111111110111111111111111111111111111111111110111111111111111111111111111111111111111111111111111101111111111111111111111111111111111111111111111111111111111111111111111111111...

result:

ok Output is valid. OK

Test #22:

score: -100
Time Limit Exceeded

input:

5000 1000000
536 2549
4636 9544
1417 8603
2634 4970
511 8885
7042 9446
1807 2806
4633 8212
1638 8794
2918 8150
1423 5343
2615 6301
7023 8526
2950 7562
6777 7968
4787 9333
4122 9857
993 6039
5459 6837
5589 7246
1644 9641
1778 7305
1334 1568
1436 9323
4902 6285
5497 6384
1584 4996
6710 8356
1371 9492
...

output:


result: