QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#472550#602. 最小费用最大流(随机数据)EXODUS#100 ✓360ms4284kbC++173.5kb2024-07-11 17:07:362024-07-11 17:07:36

Judging History

你现在查看的是最新测评结果

  • [2024-07-11 17:07:36]
  • 评测
  • 测评结果:100
  • 用时:360ms
  • 内存:4284kb
  • [2024-07-11 17:07:36]
  • 提交

answer



#include <cassert>
#include <limits>
#include <vector>

#include <vector>

namespace exodus{
	namespace internal{
		template <class T> struct simple_queue{
			std::vector<T>q;
			int pos;
			simple_queue():pos(0){}
			void reserve(int n){q.reserve(n);}
			int size()const{return (int)q.size()-pos;}
			bool empty()const{return pos==(int)q.size();}
			void push(const T& t){q.push_back(t);}
			void emplace(const T& t){q.emplace_back(t);}
			T &front(){return q[pos];}
			void clear(){q.clear();pos=0;}
			void pop(){pos++;}
		};
	}
}


namespace exodus{
	template<typename T,typename U>
	struct mcf_graph{
	public:
		mcf_graph(){n=0;}
		explicit mcf_graph(int _n){n=_n;g.resize(n);}
		struct edge{
			int from,to;
			T cap,flow;
			U cost;
			edge(){from=to=cap=flow=cost=0;}
			edge(int _from,int _to,T _cap,T _flow,T _cost):
				from(_from),to(_to),cap(_cap),flow(_flow),cost(_cost){}
		};
		void add_edge(int u,int v,T c,U w){
			int pu=g[u].size(),pv=g[v].size();
			g[u].emplace_back(v,pv,c,w);
			g[v].emplace_back(u,pu,0,-w);
			pos.emplace_back(u,pu);
		}
		edge get_edge(int i){
			auto &e=g[pos[i].first][pos[i].second];
			auto &re=g[e.to][e.rev];
			return edge(pos[i].first,e.to,e.cap+re.cap,re.cap,e.cost);
		}
		std::vector<edge> edges(){
			std::vector<edge>res;
			for(int i=0;i<(int)pos.size();i++)
				res.emplace_back(get_edge(i));
			return res;
		}
		void change_edge(int i,T cap,T flow,U cost){
			auto &e=g[pos[i].first][pos[i].second];
			auto &re=g[e.to][e.rev];
			e.cap=cap-flow,re.cap=flow;e.cost=cost,re.cost=-cost;
		}
		std::pair<T,U> simple_flow(int s,int t){
			return simple_flow(s,t,std::numeric_limits<T>::max());
		}
		std::pair<T,U> simple_flow(int s,int t,T flow_limit){
			std::vector<U> dis(n);
			std::vector<int> pre(n),inq(n);
			std::vector<int> lse(n);
			std::vector<T> lim(n);
			auto spfa=[&](){
				fill(dis.begin(),dis.end(),std::numeric_limits<T>::max());
				fill(pre.begin(),pre.end(),-1);
				fill(inq.begin(),inq.end(),0);
				fill(lse.begin(),lse.end(),0);
				fill(lim.begin(),lim.end(),std::numeric_limits<T>::max());
				dis[s]=0,pre[t]=-1;
				internal::simple_queue<int> q;
				q.emplace(s);inq[s]=1;
				while(!q.empty()){
					int u=q.front();q.pop();
					inq[u]=0;
					for(auto &e:g[u]){
						if(e.cap&&dis[e.to]>dis[u]+e.cost){
							dis[e.to]=dis[u]+e.cost;
							pre[e.to]=u;
							lse[e.to]=e.rev;
							lim[e.to]=std::min(lim[u],e.cap);
							if(!inq[e.to])
								inq[e.to]=1,q.emplace(e.to);
						}
					}
				}
				return pre[t]!=-1;
			};
			std::pair<T,U> res(0,0);
			while(flow_limit!=T()&&spfa()){
				int u=t;
				T f=std::min(lim[t],flow_limit);
				res.first+=f;
				res.second+=f*dis[t];
				while(u!=s){
					g[u][lse[u]].cap+=f;
					g[g[u][lse[u]].to][g[u][lse[u]].rev].cap-=f;
					u=pre[u];
				}
			}
			return res;
		}
	private:
		struct edge_info{
			int to,rev;
			T cap;
			U cost;
			edge_info(){to=rev=cap=cost=0;}
			edge_info(int _to,int _rev,T _cap,T _cost):
				to(_to),rev(_rev),cap(_cap),cost(_cost){}
		};
		int n;
		std::vector<std::pair<int,int>> pos;
		std::vector<std::vector<edge_info>> g;
	};
}

#include<bits/stdc++.h>
using namespace std;
int main(){
	cin.tie(nullptr)->sync_with_stdio(false);
	vector<vector<int>::iterator>vec;
	int n,m,s,t;
	cin>>n>>m;
	s=1,t=n;
	exodus::mcf_graph<int,int> G(n);
	for(int i=0,u,v,c,w;i<m;i++){
		cin>>u>>v>>c>>w;
		G.add_edge(u-1,v-1,c,w);
	}
	auto res=G.simple_flow(s-1,t-1);
	cout<<res.first<<' '<<res.second<<'\n';
	return 0;
}

詳細信息

Test #1:

score: 10
Accepted
time: 0ms
memory: 3504kb

input:

8 27
2 3 2147483647 100
1 3 1 100
2 4 2147483647 10
1 4 1 10
2 4 2147483647 10
1 4 1 10
2 8 3 0
3 5 2147483647 100
1 5 1 100
3 8 1 0
3 2 2147483647 0
4 5 2147483647 10
1 5 1 10
4 8 1 0
4 2 2147483647 0
5 6 2147483647 1
1 6 1 1
5 6 2147483647 1
1 6 1 1
5 7 2147483647 1
1 7 1 1
5 8 3 0
5 2 2147483647 ...

output:

8 243

result:

ok 2 number(s): "8 243"

Test #2:

score: 10
Accepted
time: 0ms
memory: 3596kb

input:

12 49
2 10 2147483647 5
1 10 1 5
2 5 2147483647 50
1 5 1 50
2 9 2147483647 8
1 9 1 8
2 8 2147483647 47
1 8 1 47
2 11 2147483647 17
1 11 1 17
2 12 5 0
3 12 0 0
3 2 2147483647 0
4 6 2147483647 18
1 6 1 18
4 11 2147483647 12
1 11 1 12
4 9 2147483647 14
1 9 1 14
4 12 3 0
4 2 2147483647 0
5 11 2147483647...

output:

15 436

result:

ok 2 number(s): "15 436"

Test #3:

score: 10
Accepted
time: 0ms
memory: 3668kb

input:

27 169
2 15 2147483647 24
1 15 1 24
2 19 2147483647 96
1 19 1 96
2 12 2147483647 49
1 12 1 49
2 13 2147483647 75
1 13 1 75
2 24 2147483647 2
1 24 1 2
2 27 5 0
3 27 0 0
3 2 2147483647 0
4 11 2147483647 99
1 11 1 99
4 3 2147483647 85
1 3 1 85
4 27 2 0
4 2 2147483647 0
5 27 0 0
5 2 2147483647 0
6 9 214...

output:

60 4338

result:

ok 2 number(s): "60 4338"

Test #4:

score: 10
Accepted
time: 6ms
memory: 3656kb

input:

77 2149
2 42 2147483647 33
1 42 1 33
2 68 2147483647 30
1 68 1 30
2 76 2147483647 13
1 76 1 13
2 51 2147483647 93
1 51 1 93
2 12 2147483647 39
1 12 1 39
2 57 2147483647 74
1 57 1 74
2 70 2147483647 21
1 70 1 21
2 73 2147483647 24
1 73 1 24
2 52 2147483647 54
1 52 1 54
2 15 2147483647 99
1 15 1 99
2 ...

output:

1000 74606

result:

ok 2 number(s): "1000 74606"

Test #5:

score: 10
Accepted
time: 37ms
memory: 3872kb

input:

102 4199
2 48 2147483647 42
1 48 1 42
2 85 2147483647 50
1 85 1 50
2 22 2147483647 83
1 22 1 83
2 95 2147483647 97
1 95 1 97
2 82 2147483647 34
1 82 1 34
2 25 2147483647 72
1 25 1 72
2 4 2147483647 17
1 4 1 17
2 47 2147483647 10
1 47 1 10
2 71 2147483647 12
1 71 1 12
2 68 2147483647 39
1 68 1 39
2 2...

output:

2000 161420

result:

ok 2 number(s): "2000 161420"

Test #6:

score: 10
Accepted
time: 38ms
memory: 3776kb

input:

102 4199
2 79 2147483647 13
1 79 1 13
2 83 2147483647 73
1 83 1 73
2 75 2147483647 90
1 75 1 90
2 30 2147483647 92
1 30 1 92
2 54 2147483647 25
1 54 1 25
2 66 2147483647 53
1 66 1 53
2 52 2147483647 37
1 52 1 37
2 63 2147483647 46
1 63 1 46
2 11 2147483647 20
1 11 1 20
2 55 2147483647 53
1 55 1 53
2...

output:

2000 143072

result:

ok 2 number(s): "2000 143072"

Test #7:

score: 10
Accepted
time: 37ms
memory: 4036kb

input:

102 4199
2 39 2147483647 45
1 39 1 45
2 51 2147483647 11
1 51 1 11
2 86 2147483647 63
1 86 1 63
2 23 2147483647 46
1 23 1 46
2 48 2147483647 63
1 48 1 63
2 87 2147483647 8
1 87 1 8
2 73 2147483647 63
1 73 1 63
2 5 2147483647 52
1 5 1 52
2 80 2147483647 21
1 80 1 21
2 31 2147483647 44
1 31 1 44
2 101...

output:

2000 146132

result:

ok 2 number(s): "2000 146132"

Test #8:

score: 10
Accepted
time: 314ms
memory: 4276kb

input:

302 10599
2 72 2147483647 169
1 72 1 169
2 260 2147483647 165
1 260 1 165
2 12 2147483647 108
1 12 1 108
2 16 2147483647 26
1 16 1 26
2 28 2147483647 148
1 28 1 148
2 7 2147483647 74
1 7 1 74
2 139 2147483647 199
1 139 1 199
2 231 2147483647 9
1 231 1 9
2 287 2147483647 123
1 287 1 123
2 135 2147483...

output:

5000 1106316

result:

ok 2 number(s): "5000 1106316"

Test #9:

score: 10
Accepted
time: 360ms
memory: 4064kb

input:

302 10599
2 222 2147483647 132
1 222 1 132
2 17 2147483647 7
1 17 1 7
2 177 2147483647 253
1 177 1 253
2 90 2147483647 195
1 90 1 195
2 128 2147483647 289
1 128 1 289
2 42 2147483647 193
1 42 1 193
2 213 2147483647 133
1 213 1 133
2 263 2147483647 293
1 263 1 293
2 50 2147483647 155
1 50 1 155
2 228...

output:

5000 1290871

result:

ok 2 number(s): "5000 1290871"

Test #10:

score: 10
Accepted
time: 325ms
memory: 4284kb

input:

302 10599
2 176 2147483647 289
1 176 1 289
2 190 2147483647 99
1 190 1 99
2 10 2147483647 96
1 10 1 96
2 240 2147483647 165
1 240 1 165
2 273 2147483647 205
1 273 1 205
2 248 2147483647 194
1 248 1 194
2 220 2147483647 122
1 220 1 122
2 194 2147483647 167
1 194 1 167
2 8 2147483647 67
1 8 1 67
2 227...

output:

5000 1395897

result:

ok 2 number(s): "5000 1395897"