QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#472550 | #602. 最小费用最大流(随机数据) | EXODUS# | 100 ✓ | 360ms | 4284kb | C++17 | 3.5kb | 2024-07-11 17:07:36 | 2024-07-11 17:07:36 |
Judging History
answer
#include <cassert>
#include <limits>
#include <vector>
#include <vector>
namespace exodus{
namespace internal{
template <class T> struct simple_queue{
std::vector<T>q;
int pos;
simple_queue():pos(0){}
void reserve(int n){q.reserve(n);}
int size()const{return (int)q.size()-pos;}
bool empty()const{return pos==(int)q.size();}
void push(const T& t){q.push_back(t);}
void emplace(const T& t){q.emplace_back(t);}
T &front(){return q[pos];}
void clear(){q.clear();pos=0;}
void pop(){pos++;}
};
}
}
namespace exodus{
template<typename T,typename U>
struct mcf_graph{
public:
mcf_graph(){n=0;}
explicit mcf_graph(int _n){n=_n;g.resize(n);}
struct edge{
int from,to;
T cap,flow;
U cost;
edge(){from=to=cap=flow=cost=0;}
edge(int _from,int _to,T _cap,T _flow,T _cost):
from(_from),to(_to),cap(_cap),flow(_flow),cost(_cost){}
};
void add_edge(int u,int v,T c,U w){
int pu=g[u].size(),pv=g[v].size();
g[u].emplace_back(v,pv,c,w);
g[v].emplace_back(u,pu,0,-w);
pos.emplace_back(u,pu);
}
edge get_edge(int i){
auto &e=g[pos[i].first][pos[i].second];
auto &re=g[e.to][e.rev];
return edge(pos[i].first,e.to,e.cap+re.cap,re.cap,e.cost);
}
std::vector<edge> edges(){
std::vector<edge>res;
for(int i=0;i<(int)pos.size();i++)
res.emplace_back(get_edge(i));
return res;
}
void change_edge(int i,T cap,T flow,U cost){
auto &e=g[pos[i].first][pos[i].second];
auto &re=g[e.to][e.rev];
e.cap=cap-flow,re.cap=flow;e.cost=cost,re.cost=-cost;
}
std::pair<T,U> simple_flow(int s,int t){
return simple_flow(s,t,std::numeric_limits<T>::max());
}
std::pair<T,U> simple_flow(int s,int t,T flow_limit){
std::vector<U> dis(n);
std::vector<int> pre(n),inq(n);
std::vector<int> lse(n);
std::vector<T> lim(n);
auto spfa=[&](){
fill(dis.begin(),dis.end(),std::numeric_limits<T>::max());
fill(pre.begin(),pre.end(),-1);
fill(inq.begin(),inq.end(),0);
fill(lse.begin(),lse.end(),0);
fill(lim.begin(),lim.end(),std::numeric_limits<T>::max());
dis[s]=0,pre[t]=-1;
internal::simple_queue<int> q;
q.emplace(s);inq[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
inq[u]=0;
for(auto &e:g[u]){
if(e.cap&&dis[e.to]>dis[u]+e.cost){
dis[e.to]=dis[u]+e.cost;
pre[e.to]=u;
lse[e.to]=e.rev;
lim[e.to]=std::min(lim[u],e.cap);
if(!inq[e.to])
inq[e.to]=1,q.emplace(e.to);
}
}
}
return pre[t]!=-1;
};
std::pair<T,U> res(0,0);
while(flow_limit!=T()&&spfa()){
int u=t;
T f=std::min(lim[t],flow_limit);
res.first+=f;
res.second+=f*dis[t];
while(u!=s){
g[u][lse[u]].cap+=f;
g[g[u][lse[u]].to][g[u][lse[u]].rev].cap-=f;
u=pre[u];
}
}
return res;
}
private:
struct edge_info{
int to,rev;
T cap;
U cost;
edge_info(){to=rev=cap=cost=0;}
edge_info(int _to,int _rev,T _cap,T _cost):
to(_to),rev(_rev),cap(_cap),cost(_cost){}
};
int n;
std::vector<std::pair<int,int>> pos;
std::vector<std::vector<edge_info>> g;
};
}
#include<bits/stdc++.h>
using namespace std;
int main(){
cin.tie(nullptr)->sync_with_stdio(false);
vector<vector<int>::iterator>vec;
int n,m,s,t;
cin>>n>>m;
s=1,t=n;
exodus::mcf_graph<int,int> G(n);
for(int i=0,u,v,c,w;i<m;i++){
cin>>u>>v>>c>>w;
G.add_edge(u-1,v-1,c,w);
}
auto res=G.simple_flow(s-1,t-1);
cout<<res.first<<' '<<res.second<<'\n';
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 10
Accepted
time: 0ms
memory: 3504kb
input:
8 27 2 3 2147483647 100 1 3 1 100 2 4 2147483647 10 1 4 1 10 2 4 2147483647 10 1 4 1 10 2 8 3 0 3 5 2147483647 100 1 5 1 100 3 8 1 0 3 2 2147483647 0 4 5 2147483647 10 1 5 1 10 4 8 1 0 4 2 2147483647 0 5 6 2147483647 1 1 6 1 1 5 6 2147483647 1 1 6 1 1 5 7 2147483647 1 1 7 1 1 5 8 3 0 5 2 2147483647 ...
output:
8 243
result:
ok 2 number(s): "8 243"
Test #2:
score: 10
Accepted
time: 0ms
memory: 3596kb
input:
12 49 2 10 2147483647 5 1 10 1 5 2 5 2147483647 50 1 5 1 50 2 9 2147483647 8 1 9 1 8 2 8 2147483647 47 1 8 1 47 2 11 2147483647 17 1 11 1 17 2 12 5 0 3 12 0 0 3 2 2147483647 0 4 6 2147483647 18 1 6 1 18 4 11 2147483647 12 1 11 1 12 4 9 2147483647 14 1 9 1 14 4 12 3 0 4 2 2147483647 0 5 11 2147483647...
output:
15 436
result:
ok 2 number(s): "15 436"
Test #3:
score: 10
Accepted
time: 0ms
memory: 3668kb
input:
27 169 2 15 2147483647 24 1 15 1 24 2 19 2147483647 96 1 19 1 96 2 12 2147483647 49 1 12 1 49 2 13 2147483647 75 1 13 1 75 2 24 2147483647 2 1 24 1 2 2 27 5 0 3 27 0 0 3 2 2147483647 0 4 11 2147483647 99 1 11 1 99 4 3 2147483647 85 1 3 1 85 4 27 2 0 4 2 2147483647 0 5 27 0 0 5 2 2147483647 0 6 9 214...
output:
60 4338
result:
ok 2 number(s): "60 4338"
Test #4:
score: 10
Accepted
time: 6ms
memory: 3656kb
input:
77 2149 2 42 2147483647 33 1 42 1 33 2 68 2147483647 30 1 68 1 30 2 76 2147483647 13 1 76 1 13 2 51 2147483647 93 1 51 1 93 2 12 2147483647 39 1 12 1 39 2 57 2147483647 74 1 57 1 74 2 70 2147483647 21 1 70 1 21 2 73 2147483647 24 1 73 1 24 2 52 2147483647 54 1 52 1 54 2 15 2147483647 99 1 15 1 99 2 ...
output:
1000 74606
result:
ok 2 number(s): "1000 74606"
Test #5:
score: 10
Accepted
time: 37ms
memory: 3872kb
input:
102 4199 2 48 2147483647 42 1 48 1 42 2 85 2147483647 50 1 85 1 50 2 22 2147483647 83 1 22 1 83 2 95 2147483647 97 1 95 1 97 2 82 2147483647 34 1 82 1 34 2 25 2147483647 72 1 25 1 72 2 4 2147483647 17 1 4 1 17 2 47 2147483647 10 1 47 1 10 2 71 2147483647 12 1 71 1 12 2 68 2147483647 39 1 68 1 39 2 2...
output:
2000 161420
result:
ok 2 number(s): "2000 161420"
Test #6:
score: 10
Accepted
time: 38ms
memory: 3776kb
input:
102 4199 2 79 2147483647 13 1 79 1 13 2 83 2147483647 73 1 83 1 73 2 75 2147483647 90 1 75 1 90 2 30 2147483647 92 1 30 1 92 2 54 2147483647 25 1 54 1 25 2 66 2147483647 53 1 66 1 53 2 52 2147483647 37 1 52 1 37 2 63 2147483647 46 1 63 1 46 2 11 2147483647 20 1 11 1 20 2 55 2147483647 53 1 55 1 53 2...
output:
2000 143072
result:
ok 2 number(s): "2000 143072"
Test #7:
score: 10
Accepted
time: 37ms
memory: 4036kb
input:
102 4199 2 39 2147483647 45 1 39 1 45 2 51 2147483647 11 1 51 1 11 2 86 2147483647 63 1 86 1 63 2 23 2147483647 46 1 23 1 46 2 48 2147483647 63 1 48 1 63 2 87 2147483647 8 1 87 1 8 2 73 2147483647 63 1 73 1 63 2 5 2147483647 52 1 5 1 52 2 80 2147483647 21 1 80 1 21 2 31 2147483647 44 1 31 1 44 2 101...
output:
2000 146132
result:
ok 2 number(s): "2000 146132"
Test #8:
score: 10
Accepted
time: 314ms
memory: 4276kb
input:
302 10599 2 72 2147483647 169 1 72 1 169 2 260 2147483647 165 1 260 1 165 2 12 2147483647 108 1 12 1 108 2 16 2147483647 26 1 16 1 26 2 28 2147483647 148 1 28 1 148 2 7 2147483647 74 1 7 1 74 2 139 2147483647 199 1 139 1 199 2 231 2147483647 9 1 231 1 9 2 287 2147483647 123 1 287 1 123 2 135 2147483...
output:
5000 1106316
result:
ok 2 number(s): "5000 1106316"
Test #9:
score: 10
Accepted
time: 360ms
memory: 4064kb
input:
302 10599 2 222 2147483647 132 1 222 1 132 2 17 2147483647 7 1 17 1 7 2 177 2147483647 253 1 177 1 253 2 90 2147483647 195 1 90 1 195 2 128 2147483647 289 1 128 1 289 2 42 2147483647 193 1 42 1 193 2 213 2147483647 133 1 213 1 133 2 263 2147483647 293 1 263 1 293 2 50 2147483647 155 1 50 1 155 2 228...
output:
5000 1290871
result:
ok 2 number(s): "5000 1290871"
Test #10:
score: 10
Accepted
time: 325ms
memory: 4284kb
input:
302 10599 2 176 2147483647 289 1 176 1 289 2 190 2147483647 99 1 190 1 99 2 10 2147483647 96 1 10 1 96 2 240 2147483647 165 1 240 1 165 2 273 2147483647 205 1 273 1 205 2 248 2147483647 194 1 248 1 194 2 220 2147483647 122 1 220 1 122 2 194 2147483647 167 1 194 1 167 2 8 2147483647 67 1 8 1 67 2 227...
output:
5000 1395897
result:
ok 2 number(s): "5000 1395897"