QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#376267 | #8512. Harmonic Operations | maspy | WA | 1ms | 3960kb | C++20 | 19.5kb | 2024-04-04 00:45:10 | 2024-04-04 00:45:11 |
Judging History
answer
#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else
// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;
template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;
using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;
#define vv(type, name, h, ...) \
vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) \
vector<vector<vector<type>>> name( \
h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
vector<vector<vector<vector<type>>>> name( \
a, vector<vector<vector<type>>>( \
b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))
// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)
#define FOR_subset(t, s) \
for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if
#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define stoi stoll
int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
T floor(T a, T b) {
return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
T q = floor(x, y);
return {q, x - q * y};
}
template <typename T, typename U>
T SUM(const vector<U> &A) {
T sm = 0;
for (auto &&a: A) sm += a;
return sm;
}
#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()
template <typename T>
T POP(deque<T> &que) {
T a = que.front();
que.pop_front();
return a;
}
template <typename T>
T POP(pq<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(pqg<T> &que) {
T a = que.top();
que.pop();
return a;
}
template <typename T>
T POP(vc<T> &que) {
T a = que.back();
que.pop_back();
return a;
}
template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
if (check_ok) assert(check(ok));
while (abs(ok - ng) > 1) {
auto x = (ng + ok) / 2;
(check(x) ? ok : ng) = x;
}
return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
FOR(iter) {
double x = (ok + ng) / 2;
(check(x) ? ok : ng) = x;
}
return (ok + ng) / 2;
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
vc<int> A(S.size());
FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
return A;
}
template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
int N = A.size();
vector<T> B(N + 1);
FOR(i, N) { B[i + 1] = B[i] + A[i]; }
if (off == 0) B.erase(B.begin());
return B;
}
// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
vector<int> ids(len(A));
iota(all(ids), 0);
sort(all(ids),
[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
return ids;
}
// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
vc<T> B(len(I));
FOR(i, len(I)) B[i] = A[I[i]];
return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>
// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;
struct Pre {
char num[10000][4];
constexpr Pre() : num() {
for (int i = 0; i < 10000; i++) {
int n = i;
for (int j = 3; j >= 0; j--) {
num[i][j] = n % 10 | '0';
n /= 10;
}
}
}
} constexpr pre;
inline void load() {
memcpy(ibuf, ibuf + pil, pir - pil);
pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
pil = 0;
if (pir < SZ) ibuf[pir++] = '\n';
}
inline void flush() {
fwrite(obuf, 1, por, stdout);
por = 0;
}
void rd(char &c) {
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
}
void rd(string &x) {
x.clear();
char c;
do {
if (pil + 1 > pir) load();
c = ibuf[pil++];
} while (isspace(c));
do {
x += c;
if (pil == pir) load();
c = ibuf[pil++];
} while (!isspace(c));
}
template <typename T>
void rd_real(T &x) {
string s;
rd(s);
x = stod(s);
}
template <typename T>
void rd_integer(T &x) {
if (pil + 100 > pir) load();
char c;
do
c = ibuf[pil++];
while (c < '-');
bool minus = 0;
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (c == '-') { minus = 1, c = ibuf[pil++]; }
}
x = 0;
while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
if (minus) x = -x;
}
}
void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }
template <class T, class U>
void rd(pair<T, U> &p) {
return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
if constexpr (N < std::tuple_size<T>::value) {
auto &x = std::get<N>(t);
rd(x);
rd_tuple<N + 1>(t);
}
}
template <class... T>
void rd(tuple<T...> &tpl) {
rd_tuple(tpl);
}
template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
for (auto &d: x) rd(d);
}
void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
rd(h), read(t...);
}
void wt(const char c) {
if (por == SZ) flush();
obuf[por++] = c;
}
void wt(const string s) {
for (char c: s) wt(c);
}
void wt(const char *s) {
size_t len = strlen(s);
for (size_t i = 0; i < len; i++) wt(s[i]);
}
template <typename T>
void wt_integer(T x) {
if (por > SZ - 100) flush();
if (x < 0) { obuf[por++] = '-', x = -x; }
int outi;
for (outi = 96; x >= 10000; outi -= 4) {
memcpy(out + outi, pre.num[x % 10000], 4);
x /= 10000;
}
if (x >= 1000) {
memcpy(obuf + por, pre.num[x], 4);
por += 4;
} else if (x >= 100) {
memcpy(obuf + por, pre.num[x] + 1, 3);
por += 3;
} else if (x >= 10) {
int q = (x * 103) >> 10;
obuf[por] = q | '0';
obuf[por + 1] = (x - q * 10) | '0';
por += 2;
} else
obuf[por++] = x | '0';
memcpy(obuf + por, out + outi + 4, 96 - outi);
por += 96 - outi;
}
template <typename T>
void wt_real(T x) {
ostringstream oss;
oss << fixed << setprecision(15) << double(x);
string s = oss.str();
wt(s);
}
void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }
template <class T, class U>
void wt(const pair<T, U> val) {
wt(val.first);
wt(' ');
wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
if constexpr (N < std::tuple_size<T>::value) {
if constexpr (N > 0) { wt(' '); }
const auto x = std::get<N>(t);
wt(x);
wt_tuple<N + 1>(t);
}
}
template <class... T>
void wt(tuple<T...> tpl) {
wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
template <class T>
void wt(const vector<T> val) {
auto n = val.size();
for (size_t i = 0; i < n; i++) {
if (i) wt(' ');
wt(val[i]);
}
}
void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
wt(head);
if (sizeof...(Tail)) wt(' ');
print(forward<Tail>(tail)...);
}
// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;
#define INT(...) \
int __VA_ARGS__; \
read(__VA_ARGS__)
#define LL(...) \
ll __VA_ARGS__; \
read(__VA_ARGS__)
#define U32(...) \
u32 __VA_ARGS__; \
read(__VA_ARGS__)
#define U64(...) \
u64 __VA_ARGS__; \
read(__VA_ARGS__)
#define STR(...) \
string __VA_ARGS__; \
read(__VA_ARGS__)
#define CHAR(...) \
char __VA_ARGS__; \
read(__VA_ARGS__)
#define DBL(...) \
double __VA_ARGS__; \
read(__VA_ARGS__)
#define VEC(type, name, size) \
vector<type> name(size); \
read(name)
#define VV(type, name, h, w) \
vector<vector<type>> name(h, vector<type>(w)); \
read(name)
void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/random/base.hpp"
u64 RNG_64() {
static uint64_t x_
= uint64_t(chrono::duration_cast<chrono::nanoseconds>(
chrono::high_resolution_clock::now().time_since_epoch())
.count())
* 10150724397891781847ULL;
x_ ^= x_ << 7;
return x_ ^= x_ >> 9;
}
u64 RNG(u64 lim) { return RNG_64() % lim; }
ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/mod/modint61.hpp"
struct modint61 {
static constexpr u64 mod = (1ULL << 61) - 1;
u64 val;
constexpr modint61() : val(0ULL) {}
constexpr modint61(u32 x) : val(x) {}
constexpr modint61(u64 x) : val(x % mod) {}
constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {}
constexpr modint61(ll x)
: val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod))
: x) {}
static constexpr u64 get_mod() { return mod; }
modint61 &operator+=(const modint61 &a) {
val = ((val += a.val) >= mod) ? (val - mod) : val;
return *this;
}
modint61 &operator-=(const modint61 &a) {
val = ((val -= a.val) >= mod) ? (val + mod) : val;
return *this;
}
modint61 &operator*=(const modint61 &a) {
const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val;
val = (y >> 61) + (y & mod);
val = (val >= mod) ? (val - mod) : val;
return *this;
}
modint61 operator-() const { return modint61(val ? mod - val : u64(0)); }
modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); }
modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
bool operator==(const modint61 &p) const { return val == p.val; }
bool operator!=(const modint61 &p) const { return val != p.val; }
modint61 inverse() const {
ll a = val, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b), swap(u -= t * v, v);
}
return modint61(u);
}
modint61 pow(ll n) const {
assert(n >= 0);
modint61 ret(1), mul(val);
while (n > 0) {
if (n & 1) ret *= mul;
mul *= mul, n >>= 1;
}
return ret;
}
};
#ifdef FASTIO
void rd(modint61 &x) {
fastio::rd(x.val);
assert(0 <= x.val && x.val < modint61::mod);
}
void wt(modint61 x) { fastio::wt(x.val); }
#endif
#line 4 "library/string/rollinghash.hpp"
struct RollingHash {
using mint = modint61;
static constexpr u64 mod = mint::get_mod();
const mint base;
vc<mint> power;
static inline mint generate_base() { return RNG(mod); }
inline void expand(size_t sz) {
if (power.size() < sz + 1) {
int pre_sz = (int)power.size();
power.resize(sz + 1);
FOR(i, pre_sz - 1, sz) power[i + 1] = power[i] * base;
}
}
explicit RollingHash(mint base = generate_base()) : base(base), power{1} {}
template <typename STRING>
vector<mint> build(const STRING& s) const {
int sz = s.size();
vector<mint> hashed(sz + 1, mint(0));
for (int i = 0; i < sz; i++) { hashed[i + 1] = hashed[i] * base + s[i]; }
return hashed;
}
template <typename STRING>
mint eval(STRING& s) {
mint x = 0;
for (auto& ch: s) x = base * x + ch;
return x;
}
mint query(const vc<mint>& s, int l, int r) {
assert(0 <= l && l <= r && r < len(s));
expand(r - l);
return (s[r] - s[l] * power[r - l]);
}
mint combine(mint h1, mint h2, int h2len) {
expand(h2len);
return h1 * power[h2len] + h2;
}
mint add_char(mint h, int x) { return h * base + mint(x); }
int lcp(const vc<mint>& a, int l1, int r1, const vc<mint>& b, int l2,
int r2) {
int len = min(r1 - l1, r2 - l2);
int low = 0, high = len + 1;
while (high - low > 1) {
int mid = (low + high) / 2;
if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
low = mid;
else
high = mid;
}
return low;
}
};
#line 1 "library/alg/monoid/dihedral.hpp"
/*
2 面体群. 長さ n の文字列に作用する.
(0,k): i 文字目が i+k 文字目に移動. S は S[-i:N-i) に変化.
(1,k): i 文字目が k-i 文字目に移動. S は S[k:k-N).
これは revS[N-1-k:N-1-k+N] とも言える.
https://qoj.ac/contest/1576/problem/8512
*/
template <int id>
struct Dihedral {
using value_type = pair<int, int>;
using X = value_type;
static inline int n = 0;
static void set_n(int m) { n = m; }
static X op(X x, X y) {
// x をやったあと y
auto [t1, k1] = x;
auto [t2, k2] = y;
int t = t1 ^ t2;
int k = (t2 == 0 ? k1 + k2 : k2 - k1 + n);
if (k >= n) k -= n;
return {t, k};
}
static X inverse(X x) {
if (x.fi == 0) x.se = (x.se == 0 ? 0 : n - x.se);
return x;
}
static constexpr X unit() { return {0, 0}; }
static constexpr bool commute = 0;
template <typename STRING>
static STRING apply(X f, STRING A) {
assert(len(A) == n);
auto [t, x] = f;
if (!t) {
rotate(A.begin(), A.begin() + n - x, A.end());
return A;
}
reverse(all(A));
rotate(A.begin(), A.begin() + (n - 1 - x), A.end());
return A;
}
};
#line 5 "main.cpp"
void solve() {
STR(S);
ll K = len(S);
ll p = K;
string S2 = S + S + S;
string T2 = S2;
reverse(all(T2));
RollingHash RH;
auto RS = RH.build(S2);
auto RT = RH.build(T2);
FOR_R(i, 1, K + 1) {
if (RH.query(RS, i, i + K) == RH.query(RS, 0, K)) p = i;
}
assert(K % p == 0);
using Mono = Dihedral<0>;
Mono::set_n(p);
LL(N);
using F = Mono::value_type;
vc<F> dat(N);
FOR(i, N) {
STR(S);
if (S == "I") { dat[i] = {1, (K - 1) % p}; }
if (S == "R") {
LL(n);
dat[i] = {0, (K - n) % p};
}
if (S == "L") {
LL(n);
dat[i] = {0, (K + n) % p};
}
}
// A[L]^-1 A[R] = X
vc<pi> X;
X.eb(0, 0);
vi B;
FOR(b, K) {
// S[0] が b 文字目にくる
// これは T の K-1 何文字目?
// K-1-b スタート
ll s = K - 1 - b + K;
if (RH.query(RS, 0, K) == RH.query(RT, s, s + K)) { B.eb(b); }
}
if (len(B) >= 2) { FOR(i, 1, len(B)) assert(B[i] == B[i - 1] + p); }
if (!B.empty()) X.eb(1, B[0]);
// 累積
vc<F> A(N + 1);
A[0] = Mono::unit();
FOR(i, N) A[i + 1] = Mono::op(A[i], dat[i]);
// print("p", p);
// print("X", X);
// print("dat", dat);
// print("A", A);
ll ANS = 0;
vv(int, CNT, 2, p);
FOR(R, N + 1) {
for (auto &x: X) {
auto [a, b] = Mono::op(A[R], Mono::inverse(x));
ANS += CNT[a][b];
}
auto [a, b] = A[R];
CNT[a][b] += 1;
// FOR(L, R) {
// auto [a, b] = Mono::op(Mono::inverse(A[L]), A[R]);
// if (a == 0) {
// if (b == 0) { ANS++; }
// }
// if (a == 1) {
// if (RH.query(RS, 0, p) == RH.query(RT, b + 1, b + p + 1)) { ANS++; }
// }
// }
}
print(ANS);
}
signed main() {
solve();
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 3676kb
input:
pda 2 R 2 L 2
output:
1
result:
ok 1 number(s): "1"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3656kb
input:
aaa 4 R 1 I I R 1
output:
10
result:
ok 1 number(s): "10"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3676kb
input:
caso 6 L 1 I I R 1 I I
output:
4
result:
ok 1 number(s): "4"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3960kb
input:
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq 100 L 12 I R 47 L 54 I I R 80 L 86 L 19 R 5 L 53 L 40 R 20 L 11 R 40 I I R 66 R 6 L 76 L 93 R 39 I I L 24 R 59 R 99 L 52 I I R 77 L 11 R 60 L 16 I L 40 I R 35 L 64 R 11 L 34 I R 35 I L 87 I I L 42 L ...
output:
5050
result:
ok 1 number(s): "5050"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3708kb
input:
wewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewe 100 R 83 R 34 I I R 87 R 74 L 98 I L 77 L 8 R 23 L 94 I I L 79 L 87 L 47 L 85 L 49 L 7 I I R 97 R 15 I R 66 L 8 R 62 R 68 I I R 32 R 24 R 36 L 60 R 75 R 77 I L 42 I L 61 I I R 78 R 51 L 98 I L 77 I I...
output:
2556
result:
ok 1 number(s): "2556"
Test #6:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
rtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr 100 R 27 R 68 I L 29 L 51 L 19 L 12 L 10 L 52 L 38 L 17 R 30 L 29 L 51 L 17 R 29 I R 96 R 50 R 56 I I I L 73 L 15 I R 1 R 81 L 94 R 27 R 52 R 57 R 44 I I L 53 I R 87 L 39 L 25 I I R 25 I I I L 88 L ...
output:
116
result:
ok 1 number(s): "116"
Test #7:
score: 0
Accepted
time: 0ms
memory: 3772kb
input:
tcldtcldtcldtcldtcldtcldtcldtcldtcld 100 L 20 I I I L 20 R 13 L 16 L 19 R 10 I I I L 11 R 30 R 30 I L 35 I L 28 R 23 R 24 L 20 R 15 I I L 13 I R 1 I R 6 I I L 22 I L 22 R 22 L 30 L 30 I I I R 35 I R 3 L 1 R 4 I R 11 R 2 R 21 R 15 I R 5 L 2 L 4 L 7 L 19 L 29 R 8 I L 24 I I I L 29 I R 35 R 32 I R 14 L...
output:
703
result:
ok 1 number(s): "703"
Test #8:
score: 0
Accepted
time: 0ms
memory: 3928kb
input:
wflbkhwflbkhwflbkhwflbkhwflbkhwflbkh 100 I R 28 R 13 R 7 R 29 I I I R 25 R 10 R 23 I R 26 I I L 18 I R 18 L 6 I I R 8 R 8 I R 6 L 16 I R 2 R 17 L 31 R 31 L 22 R 26 L 21 L 20 R 10 L 13 R 33 R 13 R 35 R 22 L 2 L 4 R 19 L 32 L 25 I L 31 R 10 R 17 R 15 L 6 L 9 R 31 R 20 I I R 4 I L 30 L 30 L 2 R 18 R 35...
output:
442
result:
ok 1 number(s): "442"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3772kb
input:
mzgaokjwpmzgaokjwpmzgaokjwpmzgaokjwp 100 R 10 I L 24 L 8 I L 19 L 25 I I R 27 R 24 I I L 16 I I L 35 R 14 I L 23 R 17 R 16 R 4 R 4 L 29 I R 11 R 9 R 15 I L 18 I I L 25 R 13 L 24 I I L 8 I I I I L 24 I I L 19 L 23 I L 20 R 35 L 31 I I R 27 I I I L 35 R 16 L 10 R 28 R 14 I I R 30 R 18 L 16 L 6 L 12 R ...
output:
280
result:
ok 1 number(s): "280"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3736kb
input:
gtvcymjngzntgtvcymjngzntgtvcymjngznt 100 L 33 L 5 R 31 R 18 I R 14 R 9 L 1 I R 1 R 15 L 15 I I I L 13 R 7 I I L 2 I L 3 I L 19 L 22 L 2 R 32 I L 1 R 24 R 23 I R 25 L 11 R 34 R 25 I L 25 R 22 R 34 I I L 2 R 13 L 3 I L 30 I R 7 R 20 I R 24 L 34 R 23 I L 26 R 22 I I I R 17 I I L 14 R 27 R 35 I L 34 L 3...
output:
206
result:
ok 1 number(s): "206"
Test #11:
score: 0
Accepted
time: 1ms
memory: 3960kb
input:
dvaauyemcqhrmduoumdvaauyemcqhrmduoum 100 L 21 R 12 R 30 L 13 I I L 1 L 31 R 4 L 20 I L 6 I L 29 R 19 L 12 R 25 R 25 I R 21 I L 12 L 25 R 35 L 8 R 7 R 29 I R 4 L 24 R 29 I I I L 12 L 24 R 19 L 33 L 4 I R 35 I R 16 I R 10 I R 18 R 7 L 33 I I R 22 L 16 L 7 L 20 R 32 I I R 27 I L 9 R 16 I I R 32 I R 1 L...
output:
180
result:
ok 1 number(s): "180"
Test #12:
score: -100
Wrong Answer
time: 0ms
memory: 3708kb
input:
pkmsckbnjeeojagpdtfxlmlgofbrygcuqiahynrwooxgdruurdgxoowrnyhaiqucgyrbfoglmlxftdpgajoeejnbkcsmkplhxxhl 100 L 14 R 54 L 88 L 66 L 38 R 91 I I I I R 56 L 4 L 76 R 12 L 86 I I I I R 52 L 98 L 98 L 39 R 60 L 14 R 23 R 92 R 99 L 71 I I I I L 1 R 33 I R 65 L 72 I I I R 20 R 48 L 81 L 7 I R 72 R 14 I I R 10 ...
output:
82
result:
wrong answer 1st numbers differ - expected: '75', found: '82'