QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#376267#8512. Harmonic OperationsmaspyWA 1ms3960kbC++2019.5kb2024-04-04 00:45:102024-04-04 00:45:11

Judging History

你现在查看的是最新测评结果

  • [2024-04-04 00:45:11]
  • 评测
  • 测评结果:WA
  • 用时:1ms
  • 内存:3960kb
  • [2024-04-04 00:45:10]
  • 提交

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
#pragma GCC optimize("Ofast,unroll-loops")
// いまの CF だとこれ入れると動かない?
// #pragma GCC target("avx2,popcnt")

#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u32 = unsigned int;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'000'000'000;
template <>
constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) \
  vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...)   \
  vector<vector<vector<type>>> name( \
      h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...)       \
  vector<vector<vector<vector<type>>>> name( \
      a, vector<vector<vector<type>>>(       \
             b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define FOR_subset(t, s) \
  for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))
#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_mod_2(int x) { return __builtin_parity(x); }
int popcnt_mod_2(u32 x) { return __builtin_parity(x); }
int popcnt_mod_2(ll x) { return __builtin_parityll(x); }
int popcnt_mod_2(u64 x) { return __builtin_parityll(x); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) \
  sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids),
       [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
#line 2 "library/random/base.hpp"

u64 RNG_64() {
  static uint64_t x_
      = uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                     chrono::high_resolution_clock::now().time_since_epoch())
                     .count())
        * 10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

u64 RNG(u64 lim) { return RNG_64() % lim; }

ll RNG(ll l, ll r) { return l + RNG_64() % (r - l); }
#line 2 "library/mod/modint61.hpp"

struct modint61 {
  static constexpr u64 mod = (1ULL << 61) - 1;
  u64 val;
  constexpr modint61() : val(0ULL) {}
  constexpr modint61(u32 x) : val(x) {}
  constexpr modint61(u64 x) : val(x % mod) {}
  constexpr modint61(int x) : val((x < 0) ? (x + static_cast<ll>(mod)) : x) {}
  constexpr modint61(ll x)
      : val(((x %= static_cast<ll>(mod)) < 0) ? (x + static_cast<ll>(mod))
                                              : x) {}
  static constexpr u64 get_mod() { return mod; }
  modint61 &operator+=(const modint61 &a) {
    val = ((val += a.val) >= mod) ? (val - mod) : val;
    return *this;
  }
  modint61 &operator-=(const modint61 &a) {
    val = ((val -= a.val) >= mod) ? (val + mod) : val;
    return *this;
  }
  modint61 &operator*=(const modint61 &a) {
    const unsigned __int128 y = static_cast<unsigned __int128>(val) * a.val;
    val = (y >> 61) + (y & mod);
    val = (val >= mod) ? (val - mod) : val;
    return *this;
  }
  modint61 operator-() const { return modint61(val ? mod - val : u64(0)); }
  modint61 &operator/=(const modint61 &a) { return (*this *= a.inverse()); }
  modint61 operator+(const modint61 &p) const { return modint61(*this) += p; }
  modint61 operator-(const modint61 &p) const { return modint61(*this) -= p; }
  modint61 operator*(const modint61 &p) const { return modint61(*this) *= p; }
  modint61 operator/(const modint61 &p) const { return modint61(*this) /= p; }
  bool operator==(const modint61 &p) const { return val == p.val; }
  bool operator!=(const modint61 &p) const { return val != p.val; }
  modint61 inverse() const {
    ll a = val, b = mod, u = 1, v = 0, t;
    while (b > 0) {
      t = a / b;
      swap(a -= t * b, b), swap(u -= t * v, v);
    }
    return modint61(u);
  }
  modint61 pow(ll n) const {
    assert(n >= 0);
    modint61 ret(1), mul(val);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul, n >>= 1;
    }
    return ret;
  }
};

#ifdef FASTIO
void rd(modint61 &x) {
  fastio::rd(x.val);
  assert(0 <= x.val && x.val < modint61::mod);
}

void wt(modint61 x) { fastio::wt(x.val); }
#endif
#line 4 "library/string/rollinghash.hpp"

struct RollingHash {
  using mint = modint61;
  static constexpr u64 mod = mint::get_mod();
  const mint base;
  vc<mint> power;

  static inline mint generate_base() { return RNG(mod); }

  inline void expand(size_t sz) {
    if (power.size() < sz + 1) {
      int pre_sz = (int)power.size();
      power.resize(sz + 1);
      FOR(i, pre_sz - 1, sz) power[i + 1] = power[i] * base;
    }
  }

  explicit RollingHash(mint base = generate_base()) : base(base), power{1} {}

  template <typename STRING>
  vector<mint> build(const STRING& s) const {
    int sz = s.size();
    vector<mint> hashed(sz + 1, mint(0));
    for (int i = 0; i < sz; i++) { hashed[i + 1] = hashed[i] * base + s[i]; }
    return hashed;
  }

  template <typename STRING>
  mint eval(STRING& s) {
    mint x = 0;
    for (auto& ch: s) x = base * x + ch;
    return x;
  }

  mint query(const vc<mint>& s, int l, int r) {
    assert(0 <= l && l <= r && r < len(s));
    expand(r - l);
    return (s[r] - s[l] * power[r - l]);
  }

  mint combine(mint h1, mint h2, int h2len) {
    expand(h2len);
    return h1 * power[h2len] + h2;
  }

  mint add_char(mint h, int x) { return h * base + mint(x); }

  int lcp(const vc<mint>& a, int l1, int r1, const vc<mint>& b, int l2,
          int r2) {
    int len = min(r1 - l1, r2 - l2);
    int low = 0, high = len + 1;
    while (high - low > 1) {
      int mid = (low + high) / 2;
      if (query(a, l1, l1 + mid) == query(b, l2, l2 + mid))
        low = mid;
      else
        high = mid;
    }
    return low;
  }
};
#line 1 "library/alg/monoid/dihedral.hpp"

/*
2 面体群. 長さ n の文字列に作用する.
(0,k): i 文字目が i+k 文字目に移動. S は S[-i:N-i) に変化.
(1,k): i 文字目が k-i 文字目に移動. S は S[k:k-N).
これは revS[N-1-k:N-1-k+N] とも言える.
https://qoj.ac/contest/1576/problem/8512
*/
template <int id>
struct Dihedral {
  using value_type = pair<int, int>;
  using X = value_type;

  static inline int n = 0;
  static void set_n(int m) { n = m; }

  static X op(X x, X y) {
    // x をやったあと y
    auto [t1, k1] = x;
    auto [t2, k2] = y;
    int t = t1 ^ t2;
    int k = (t2 == 0 ? k1 + k2 : k2 - k1 + n);
    if (k >= n) k -= n;
    return {t, k};
  }
  static X inverse(X x) {
    if (x.fi == 0) x.se = (x.se == 0 ? 0 : n - x.se);
    return x;
  }
  static constexpr X unit() { return {0, 0}; }
  static constexpr bool commute = 0;
  template <typename STRING>
  static STRING apply(X f, STRING A) {
    assert(len(A) == n);
    auto [t, x] = f;
    if (!t) {
      rotate(A.begin(), A.begin() + n - x, A.end());
      return A;
    }
    reverse(all(A));
    rotate(A.begin(), A.begin() + (n - 1 - x), A.end());
    return A;
  }
};
#line 5 "main.cpp"

void solve() {
  STR(S);
  ll K = len(S);
  ll p = K;
  string S2 = S + S + S;
  string T2 = S2;
  reverse(all(T2));
  RollingHash RH;
  auto RS = RH.build(S2);
  auto RT = RH.build(T2);
  FOR_R(i, 1, K + 1) {
    if (RH.query(RS, i, i + K) == RH.query(RS, 0, K)) p = i;
  }
  assert(K % p == 0);

  using Mono = Dihedral<0>;
  Mono::set_n(p);

  LL(N);
  using F = Mono::value_type;
  vc<F> dat(N);
  FOR(i, N) {
    STR(S);
    if (S == "I") { dat[i] = {1, (K - 1) % p}; }
    if (S == "R") {
      LL(n);
      dat[i] = {0, (K - n) % p};
    }
    if (S == "L") {
      LL(n);
      dat[i] = {0, (K + n) % p};
    }
  }

  // A[L]^-1 A[R] = X

  vc<pi> X;
  X.eb(0, 0);
  vi B;
  FOR(b, K) {
    // S[0] が b 文字目にくる
    // これは T の K-1 何文字目?
    // K-1-b スタート
    ll s = K - 1 - b + K;
    if (RH.query(RS, 0, K) == RH.query(RT, s, s + K)) { B.eb(b); }
  }
  if (len(B) >= 2) { FOR(i, 1, len(B)) assert(B[i] == B[i - 1] + p); }
  if (!B.empty()) X.eb(1, B[0]);
  // 累積
  vc<F> A(N + 1);
  A[0] = Mono::unit();
  FOR(i, N) A[i + 1] = Mono::op(A[i], dat[i]);

  // print("p", p);
  // print("X", X);
  // print("dat", dat);
  // print("A", A);
  ll ANS = 0;

  vv(int, CNT, 2, p);

  FOR(R, N + 1) {
    for (auto &x: X) {
      auto [a, b] = Mono::op(A[R], Mono::inverse(x));
      ANS += CNT[a][b];
    }
    auto [a, b] = A[R];
    CNT[a][b] += 1;
    // FOR(L, R) {
    //   auto [a, b] = Mono::op(Mono::inverse(A[L]), A[R]);
    //   if (a == 0) {
    //     if (b == 0) { ANS++; }
    //   }
    //   if (a == 1) {
    //     if (RH.query(RS, 0, p) == RH.query(RT, b + 1, b + p + 1)) { ANS++; }
    //   }
    // }
  }
  print(ANS);
}

signed main() {
  solve();
  return 0;
}

详细

Test #1:

score: 100
Accepted
time: 0ms
memory: 3676kb

input:

pda
2
R 2
L 2

output:

1

result:

ok 1 number(s): "1"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3656kb

input:

aaa
4
R 1
I
I
R 1

output:

10

result:

ok 1 number(s): "10"

Test #3:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

caso
6
L 1
I
I
R 1
I
I

output:

4

result:

ok 1 number(s): "4"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3960kb

input:

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
100
L 12
I
R 47
L 54
I
I
R 80
L 86
L 19
R 5
L 53
L 40
R 20
L 11
R 40
I
I
R 66
R 6
L 76
L 93
R 39
I
I
L 24
R 59
R 99
L 52
I
I
R 77
L 11
R 60
L 16
I
L 40
I
R 35
L 64
R 11
L 34
I
R 35
I
L 87
I
I
L 42
L ...

output:

5050

result:

ok 1 number(s): "5050"

Test #5:

score: 0
Accepted
time: 0ms
memory: 3708kb

input:

wewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewewe
100
R 83
R 34
I
I
R 87
R 74
L 98
I
L 77
L 8
R 23
L 94
I
I
L 79
L 87
L 47
L 85
L 49
L 7
I
I
R 97
R 15
I
R 66
L 8
R 62
R 68
I
I
R 32
R 24
R 36
L 60
R 75
R 77
I
L 42
I
L 61
I
I
R 78
R 51
L 98
I
L 77
I
I...

output:

2556

result:

ok 1 number(s): "2556"

Test #6:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

rtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtrtr
100
R 27
R 68
I
L 29
L 51
L 19
L 12
L 10
L 52
L 38
L 17
R 30
L 29
L 51
L 17
R 29
I
R 96
R 50
R 56
I
I
I
L 73
L 15
I
R 1
R 81
L 94
R 27
R 52
R 57
R 44
I
I
L 53
I
R 87
L 39
L 25
I
I
R 25
I
I
I
L 88
L ...

output:

116

result:

ok 1 number(s): "116"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3772kb

input:

tcldtcldtcldtcldtcldtcldtcldtcldtcld
100
L 20
I
I
I
L 20
R 13
L 16
L 19
R 10
I
I
I
L 11
R 30
R 30
I
L 35
I
L 28
R 23
R 24
L 20
R 15
I
I
L 13
I
R 1
I
R 6
I
I
L 22
I
L 22
R 22
L 30
L 30
I
I
I
R 35
I
R 3
L 1
R 4
I
R 11
R 2
R 21
R 15
I
R 5
L 2
L 4
L 7
L 19
L 29
R 8
I
L 24
I
I
I
L 29
I
R 35
R 32
I
R 14
L...

output:

703

result:

ok 1 number(s): "703"

Test #8:

score: 0
Accepted
time: 0ms
memory: 3928kb

input:

wflbkhwflbkhwflbkhwflbkhwflbkhwflbkh
100
I
R 28
R 13
R 7
R 29
I
I
I
R 25
R 10
R 23
I
R 26
I
I
L 18
I
R 18
L 6
I
I
R 8
R 8
I
R 6
L 16
I
R 2
R 17
L 31
R 31
L 22
R 26
L 21
L 20
R 10
L 13
R 33
R 13
R 35
R 22
L 2
L 4
R 19
L 32
L 25
I
L 31
R 10
R 17
R 15
L 6
L 9
R 31
R 20
I
I
R 4
I
L 30
L 30
L 2
R 18
R 35...

output:

442

result:

ok 1 number(s): "442"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3772kb

input:

mzgaokjwpmzgaokjwpmzgaokjwpmzgaokjwp
100
R 10
I
L 24
L 8
I
L 19
L 25
I
I
R 27
R 24
I
I
L 16
I
I
L 35
R 14
I
L 23
R 17
R 16
R 4
R 4
L 29
I
R 11
R 9
R 15
I
L 18
I
I
L 25
R 13
L 24
I
I
L 8
I
I
I
I
L 24
I
I
L 19
L 23
I
L 20
R 35
L 31
I
I
R 27
I
I
I
L 35
R 16
L 10
R 28
R 14
I
I
R 30
R 18
L 16
L 6
L 12
R ...

output:

280

result:

ok 1 number(s): "280"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3736kb

input:

gtvcymjngzntgtvcymjngzntgtvcymjngznt
100
L 33
L 5
R 31
R 18
I
R 14
R 9
L 1
I
R 1
R 15
L 15
I
I
I
L 13
R 7
I
I
L 2
I
L 3
I
L 19
L 22
L 2
R 32
I
L 1
R 24
R 23
I
R 25
L 11
R 34
R 25
I
L 25
R 22
R 34
I
I
L 2
R 13
L 3
I
L 30
I
R 7
R 20
I
R 24
L 34
R 23
I
L 26
R 22
I
I
I
R 17
I
I
L 14
R 27
R 35
I
L 34
L 3...

output:

206

result:

ok 1 number(s): "206"

Test #11:

score: 0
Accepted
time: 1ms
memory: 3960kb

input:

dvaauyemcqhrmduoumdvaauyemcqhrmduoum
100
L 21
R 12
R 30
L 13
I
I
L 1
L 31
R 4
L 20
I
L 6
I
L 29
R 19
L 12
R 25
R 25
I
R 21
I
L 12
L 25
R 35
L 8
R 7
R 29
I
R 4
L 24
R 29
I
I
I
L 12
L 24
R 19
L 33
L 4
I
R 35
I
R 16
I
R 10
I
R 18
R 7
L 33
I
I
R 22
L 16
L 7
L 20
R 32
I
I
R 27
I
L 9
R 16
I
I
R 32
I
R 1
L...

output:

180

result:

ok 1 number(s): "180"

Test #12:

score: -100
Wrong Answer
time: 0ms
memory: 3708kb

input:

pkmsckbnjeeojagpdtfxlmlgofbrygcuqiahynrwooxgdruurdgxoowrnyhaiqucgyrbfoglmlxftdpgajoeejnbkcsmkplhxxhl
100
L 14
R 54
L 88
L 66
L 38
R 91
I
I
I
I
R 56
L 4
L 76
R 12
L 86
I
I
I
I
R 52
L 98
L 98
L 39
R 60
L 14
R 23
R 92
R 99
L 71
I
I
I
I
L 1
R 33
I
R 65
L 72
I
I
I
R 20
R 48
L 81
L 7
I
R 72
R 14
I
I
R 10
...

output:

82

result:

wrong answer 1st numbers differ - expected: '75', found: '82'