QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#341813 | #602. 最小费用最大流(随机数据) | Ishy# | 100 ✓ | 727ms | 4096kb | C++14 | 3.6kb | 2024-02-29 21:37:28 | 2024-02-29 21:37:31 |
Judging History
answer
// Sea, You & Me
#include<bits/stdc++.h>
#define LL long long
#define DB double
#define MOD 1000000007
#define ls(x) (x << 1)
#define rs(x) (x << 1 | 1)
#define lowbit(x) ((-x) & x)
#define MP make_pair
#define MT make_tuple
#define VI vector<int>
#define VL vector<LL>
#define VII VI::iterator
#define VLI VL::iterator
#define all(x) x.begin(), x.end()
#define EB emplace_back
#define PII pair<int, int>
#define SI set<int>
#define SII SI::iterator
#define fi first
#define se second
using namespace std;
template<typename T> void chkmn(T &a, const T b) { (a > b) && (a = b); }
template<typename T> void chkmx(T &a, const T b) { (a < b) && (a = b); }
void Inc(int &a, const int &b) { ((a += b) >= MOD) && (a -= MOD); }
void Dec(int &a, const int &b) { ((a -= b) < 0) && (a += MOD); }
void Mul(int &a, const int &b) { a = 1LL * a * b % MOD; }
void Sqr(int &a) { a = 1LL * a * a % MOD; }
int inc(const int &a, const int &b) { return (a + b >= MOD) ? a + b - MOD : a + b; }
int dec(const int &a, const int &b) { return (a - b < 0) ? a - b + MOD : a - b; }
int mul(const int &a, const int &b) { return 1LL * a * b % MOD; }
int sqr(const int &a) { return 1LL * a * a % MOD; }
int qwqmi(int x, int k = MOD - 2)
{
int res = 1;
while(k)
{
if(k & 1) Mul(res, x);
k >>= 1, Sqr(x);
}
return res;
}
template<typename T> void read(T &x)
{
x = 0;
int f = 1;
char ch = getchar();
while(!isdigit(ch))
{
if(ch == '-')
f = -1;
ch = getchar();
}
while(isdigit(ch))
{
x = (x << 1) + (x << 3) + (ch ^ 48);
ch = getchar();
}
x = x * f;
}
const int N = 405;
const int M = 1.5e4 + 5;
const int INF = INT_MAX;
int n, m, Start, End;
struct Lexington
{
int e, ne, cap, cost;
};
struct Noshiro
{
int idx = 1, h[N];
Lexington lxt[M << 1];
void clear()
{
idx = 1;
memset(h, 0, sizeof(h));
}
void add(int x, int y, int cap, int cost)
{
lxt[++idx] = (Lexington){y, h[x], cap, cost};
h[x] = idx;
}
void adds(int x, int y, int cap, int cost)
{
add(x, y, cap, cost);
add(y, x, 0, -cost);
}
}nsr;
namespace Dinic
{
int cur[N];
int vis[N];
int dist[N];
queue<int> q;
int ansflow = 0, anscost = 0;
bool bfs()
{
for(int i = 1; i <= n; ++i)
{
vis[i] = 0;
dist[i] = INF;
cur[i] = nsr.h[i];
}
while(!q.empty()) q.pop();
q.push(Start), vis[Start] = 1, dist[Start] = 0;
while(!q.empty())
{
int u = q.front(); q.pop(), vis[u] = 0;
for(int i = nsr.h[u]; i; i = nsr.lxt[i].ne)
{
int v = nsr.lxt[i].e;
if(dist[v] > dist[u] + nsr.lxt[i].cost && nsr.lxt[i].cap)
{
dist[v] = dist[u] + nsr.lxt[i].cost;
if(!vis[v]) q.push(v), vis[v] = 1;
}
}
}
return dist[End] != INF;
}
int dfs(int u, int flow)
{
if(u == End) return flow;
int sum = 0; vis[u] = 1;
for(int &i = cur[u]; i; i = nsr.lxt[i].ne)
{
int v = nsr.lxt[i].e;
if(!vis[v] && dist[v] == dist[u] + nsr.lxt[i].cost && nsr.lxt[i].cap)
{
int sav = dfs(v, min(flow, nsr.lxt[i].cap));
if(sav)
{
nsr.lxt[i].cap -= sav;
nsr.lxt[i ^ 1].cap += sav;
flow -= sav, sum += sav;
anscost += sav * nsr.lxt[i].cost;
if(!flow) return sum;
}
else dist[v] = -1;
}
}
vis[u] = 0;
return sum;
}
void get_ans()
{
ansflow = 0;
while(bfs())
ansflow += dfs(Start, INF);
}
};
int main()
{
read(n), read(m);
Start = 1, End = n;
nsr.clear();
for(int i = 1; i <= m; ++i)
{
int x, y, z, w;
read(x), read(y), read(z), read(w);
nsr.adds(x, y, z, w);
}
Dinic::get_ans();
printf("%d %d\n", Dinic::ansflow, Dinic::anscost);
return 0;
}
详细
Test #1:
score: 10
Accepted
time: 1ms
memory: 3748kb
input:
8 27 2 3 2147483647 100 1 3 1 100 2 4 2147483647 10 1 4 1 10 2 4 2147483647 10 1 4 1 10 2 8 3 0 3 5 2147483647 100 1 5 1 100 3 8 1 0 3 2 2147483647 0 4 5 2147483647 10 1 5 1 10 4 8 1 0 4 2 2147483647 0 5 6 2147483647 1 1 6 1 1 5 6 2147483647 1 1 6 1 1 5 7 2147483647 1 1 7 1 1 5 8 3 0 5 2 2147483647 ...
output:
8 243
result:
ok 2 number(s): "8 243"
Test #2:
score: 10
Accepted
time: 0ms
memory: 3680kb
input:
12 49 2 10 2147483647 5 1 10 1 5 2 5 2147483647 50 1 5 1 50 2 9 2147483647 8 1 9 1 8 2 8 2147483647 47 1 8 1 47 2 11 2147483647 17 1 11 1 17 2 12 5 0 3 12 0 0 3 2 2147483647 0 4 6 2147483647 18 1 6 1 18 4 11 2147483647 12 1 11 1 12 4 9 2147483647 14 1 9 1 14 4 12 3 0 4 2 2147483647 0 5 11 2147483647...
output:
15 436
result:
ok 2 number(s): "15 436"
Test #3:
score: 10
Accepted
time: 1ms
memory: 3712kb
input:
27 169 2 15 2147483647 24 1 15 1 24 2 19 2147483647 96 1 19 1 96 2 12 2147483647 49 1 12 1 49 2 13 2147483647 75 1 13 1 75 2 24 2147483647 2 1 24 1 2 2 27 5 0 3 27 0 0 3 2 2147483647 0 4 11 2147483647 99 1 11 1 99 4 3 2147483647 85 1 3 1 85 4 27 2 0 4 2 2147483647 0 5 27 0 0 5 2 2147483647 0 6 9 214...
output:
60 4338
result:
ok 2 number(s): "60 4338"
Test #4:
score: 10
Accepted
time: 19ms
memory: 4072kb
input:
77 2149 2 42 2147483647 33 1 42 1 33 2 68 2147483647 30 1 68 1 30 2 76 2147483647 13 1 76 1 13 2 51 2147483647 93 1 51 1 93 2 12 2147483647 39 1 12 1 39 2 57 2147483647 74 1 57 1 74 2 70 2147483647 21 1 70 1 21 2 73 2147483647 24 1 73 1 24 2 52 2147483647 54 1 52 1 54 2 15 2147483647 99 1 15 1 99 2 ...
output:
1000 74606
result:
ok 2 number(s): "1000 74606"
Test #5:
score: 10
Accepted
time: 84ms
memory: 3876kb
input:
102 4199 2 48 2147483647 42 1 48 1 42 2 85 2147483647 50 1 85 1 50 2 22 2147483647 83 1 22 1 83 2 95 2147483647 97 1 95 1 97 2 82 2147483647 34 1 82 1 34 2 25 2147483647 72 1 25 1 72 2 4 2147483647 17 1 4 1 17 2 47 2147483647 10 1 47 1 10 2 71 2147483647 12 1 71 1 12 2 68 2147483647 39 1 68 1 39 2 2...
output:
2000 161420
result:
ok 2 number(s): "2000 161420"
Test #6:
score: 10
Accepted
time: 83ms
memory: 3836kb
input:
102 4199 2 79 2147483647 13 1 79 1 13 2 83 2147483647 73 1 83 1 73 2 75 2147483647 90 1 75 1 90 2 30 2147483647 92 1 30 1 92 2 54 2147483647 25 1 54 1 25 2 66 2147483647 53 1 66 1 53 2 52 2147483647 37 1 52 1 37 2 63 2147483647 46 1 63 1 46 2 11 2147483647 20 1 11 1 20 2 55 2147483647 53 1 55 1 53 2...
output:
2000 143072
result:
ok 2 number(s): "2000 143072"
Test #7:
score: 10
Accepted
time: 80ms
memory: 3900kb
input:
102 4199 2 39 2147483647 45 1 39 1 45 2 51 2147483647 11 1 51 1 11 2 86 2147483647 63 1 86 1 63 2 23 2147483647 46 1 23 1 46 2 48 2147483647 63 1 48 1 63 2 87 2147483647 8 1 87 1 8 2 73 2147483647 63 1 73 1 63 2 5 2147483647 52 1 5 1 52 2 80 2147483647 21 1 80 1 21 2 31 2147483647 44 1 31 1 44 2 101...
output:
2000 146132
result:
ok 2 number(s): "2000 146132"
Test #8:
score: 10
Accepted
time: 615ms
memory: 4040kb
input:
302 10599 2 72 2147483647 169 1 72 1 169 2 260 2147483647 165 1 260 1 165 2 12 2147483647 108 1 12 1 108 2 16 2147483647 26 1 16 1 26 2 28 2147483647 148 1 28 1 148 2 7 2147483647 74 1 7 1 74 2 139 2147483647 199 1 139 1 199 2 231 2147483647 9 1 231 1 9 2 287 2147483647 123 1 287 1 123 2 135 2147483...
output:
5000 1106316
result:
ok 2 number(s): "5000 1106316"
Test #9:
score: 10
Accepted
time: 727ms
memory: 4052kb
input:
302 10599 2 222 2147483647 132 1 222 1 132 2 17 2147483647 7 1 17 1 7 2 177 2147483647 253 1 177 1 253 2 90 2147483647 195 1 90 1 195 2 128 2147483647 289 1 128 1 289 2 42 2147483647 193 1 42 1 193 2 213 2147483647 133 1 213 1 133 2 263 2147483647 293 1 263 1 293 2 50 2147483647 155 1 50 1 155 2 228...
output:
5000 1290871
result:
ok 2 number(s): "5000 1290871"
Test #10:
score: 10
Accepted
time: 660ms
memory: 4096kb
input:
302 10599 2 176 2147483647 289 1 176 1 289 2 190 2147483647 99 1 190 1 99 2 10 2147483647 96 1 10 1 96 2 240 2147483647 165 1 240 1 165 2 273 2147483647 205 1 273 1 205 2 248 2147483647 194 1 248 1 194 2 220 2147483647 122 1 220 1 122 2 194 2147483647 167 1 194 1 167 2 8 2147483647 67 1 8 1 67 2 227...
output:
5000 1395897
result:
ok 2 number(s): "5000 1395897"