QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#341813#602. 最小费用最大流(随机数据)Ishy#100 ✓727ms4096kbC++143.6kb2024-02-29 21:37:282024-02-29 21:37:31

Judging History

你现在查看的是最新测评结果

  • [2024-02-29 21:37:31]
  • 评测
  • 测评结果:100
  • 用时:727ms
  • 内存:4096kb
  • [2024-02-29 21:37:28]
  • 提交

answer

// Sea, You & Me
#include<bits/stdc++.h>
#define LL long long
#define DB double
#define MOD 1000000007
#define ls(x) (x << 1)
#define rs(x) (x << 1 | 1)
#define lowbit(x) ((-x) & x)
#define MP make_pair
#define MT make_tuple
#define VI vector<int>
#define VL vector<LL>
#define VII VI::iterator
#define VLI VL::iterator
#define all(x) x.begin(), x.end()
#define EB emplace_back
#define PII pair<int, int>
#define SI set<int>
#define SII SI::iterator
#define fi first
#define se second
using namespace std;
template<typename T> void chkmn(T &a, const T b) { (a > b) && (a = b); }
template<typename T> void chkmx(T &a, const T b) { (a < b) && (a = b); }
void Inc(int &a, const int &b) { ((a += b) >= MOD) && (a -= MOD); }
void Dec(int &a, const int &b) { ((a -= b) < 0) && (a += MOD); }
void Mul(int &a, const int &b) { a = 1LL * a * b % MOD; }
void Sqr(int &a) { a = 1LL * a * a % MOD; }
int inc(const int &a, const int &b) { return (a + b >= MOD) ? a + b - MOD : a + b; }
int dec(const int &a, const int &b) { return (a - b < 0) ? a - b + MOD : a - b; }
int mul(const int &a, const int &b) { return 1LL * a * b % MOD; }
int sqr(const int &a) { return 1LL * a * a % MOD; }
int qwqmi(int x, int k = MOD - 2)
{
	int res = 1;
	while(k)
	{
		if(k & 1) Mul(res, x);
		k >>= 1, Sqr(x);
	}
	return res;
}
template<typename T> void read(T &x)
{
	x = 0;
	int f = 1;
	char ch = getchar();
	while(!isdigit(ch))
	{
		if(ch == '-')
			f = -1;
		ch = getchar();
	}
	while(isdigit(ch))
	{
		x = (x << 1) + (x << 3) + (ch ^ 48);
		ch = getchar();
	}
	x = x * f;
}
const int N = 405;
const int M = 1.5e4 + 5;
const int INF = INT_MAX;
int n, m, Start, End;
struct Lexington
{
	int e, ne, cap, cost;
};
struct Noshiro
{
	int idx = 1, h[N];
	Lexington lxt[M << 1];
	void clear()
	{
		idx = 1;
		memset(h, 0, sizeof(h));
	}
	void add(int x, int y, int cap, int cost)
	{
		lxt[++idx] = (Lexington){y, h[x], cap, cost};
		h[x] = idx;
	}
	void adds(int x, int y, int cap, int cost)
	{
		add(x, y, cap, cost);
		add(y, x, 0, -cost);
	}
}nsr;
namespace Dinic
{
	int cur[N];
	int vis[N];
	int dist[N];
	queue<int> q;
	int ansflow = 0, anscost = 0;
	bool bfs()
	{
		for(int i = 1; i <= n; ++i)
		{
			vis[i] = 0;
			dist[i] = INF;
			cur[i] = nsr.h[i];
		}
		while(!q.empty()) q.pop();
		q.push(Start), vis[Start] = 1, dist[Start] = 0;
		while(!q.empty())
		{
			int u = q.front(); q.pop(), vis[u] = 0;
			for(int i = nsr.h[u]; i; i = nsr.lxt[i].ne)
			{
				int v = nsr.lxt[i].e;
				if(dist[v] > dist[u] + nsr.lxt[i].cost && nsr.lxt[i].cap)
				{
					dist[v] = dist[u] + nsr.lxt[i].cost;
					if(!vis[v]) q.push(v), vis[v] = 1;
				}
			}
		}
		return dist[End] != INF;
	}	
	int dfs(int u, int flow)
	{
		if(u == End) return flow;
		int sum = 0; vis[u] = 1;
		for(int &i = cur[u]; i; i = nsr.lxt[i].ne)
		{
			int v = nsr.lxt[i].e;
			if(!vis[v] && dist[v] == dist[u] + nsr.lxt[i].cost && nsr.lxt[i].cap)
			{
				int sav = dfs(v, min(flow, nsr.lxt[i].cap));
				if(sav)
				{
					nsr.lxt[i].cap -= sav;
					nsr.lxt[i ^ 1].cap += sav;
					flow -= sav, sum += sav;
					anscost += sav * nsr.lxt[i].cost;
					if(!flow) return sum;
				}
				else dist[v] = -1;
			}
		}
		vis[u] = 0;
		return sum;
	}
	void get_ans()
	{
		ansflow = 0;
		while(bfs())
			ansflow += dfs(Start, INF);
	}
};
int main()
{
	read(n), read(m);
	Start = 1, End = n;
	nsr.clear();
	for(int i = 1; i <= m; ++i)
	{
		int x, y, z, w;
		read(x), read(y), read(z), read(w);
		nsr.adds(x, y, z, w);
	}
	Dinic::get_ans();
	printf("%d %d\n", Dinic::ansflow, Dinic::anscost);
	return 0;
}




Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 10
Accepted
time: 1ms
memory: 3748kb

input:

8 27
2 3 2147483647 100
1 3 1 100
2 4 2147483647 10
1 4 1 10
2 4 2147483647 10
1 4 1 10
2 8 3 0
3 5 2147483647 100
1 5 1 100
3 8 1 0
3 2 2147483647 0
4 5 2147483647 10
1 5 1 10
4 8 1 0
4 2 2147483647 0
5 6 2147483647 1
1 6 1 1
5 6 2147483647 1
1 6 1 1
5 7 2147483647 1
1 7 1 1
5 8 3 0
5 2 2147483647 ...

output:

8 243

result:

ok 2 number(s): "8 243"

Test #2:

score: 10
Accepted
time: 0ms
memory: 3680kb

input:

12 49
2 10 2147483647 5
1 10 1 5
2 5 2147483647 50
1 5 1 50
2 9 2147483647 8
1 9 1 8
2 8 2147483647 47
1 8 1 47
2 11 2147483647 17
1 11 1 17
2 12 5 0
3 12 0 0
3 2 2147483647 0
4 6 2147483647 18
1 6 1 18
4 11 2147483647 12
1 11 1 12
4 9 2147483647 14
1 9 1 14
4 12 3 0
4 2 2147483647 0
5 11 2147483647...

output:

15 436

result:

ok 2 number(s): "15 436"

Test #3:

score: 10
Accepted
time: 1ms
memory: 3712kb

input:

27 169
2 15 2147483647 24
1 15 1 24
2 19 2147483647 96
1 19 1 96
2 12 2147483647 49
1 12 1 49
2 13 2147483647 75
1 13 1 75
2 24 2147483647 2
1 24 1 2
2 27 5 0
3 27 0 0
3 2 2147483647 0
4 11 2147483647 99
1 11 1 99
4 3 2147483647 85
1 3 1 85
4 27 2 0
4 2 2147483647 0
5 27 0 0
5 2 2147483647 0
6 9 214...

output:

60 4338

result:

ok 2 number(s): "60 4338"

Test #4:

score: 10
Accepted
time: 19ms
memory: 4072kb

input:

77 2149
2 42 2147483647 33
1 42 1 33
2 68 2147483647 30
1 68 1 30
2 76 2147483647 13
1 76 1 13
2 51 2147483647 93
1 51 1 93
2 12 2147483647 39
1 12 1 39
2 57 2147483647 74
1 57 1 74
2 70 2147483647 21
1 70 1 21
2 73 2147483647 24
1 73 1 24
2 52 2147483647 54
1 52 1 54
2 15 2147483647 99
1 15 1 99
2 ...

output:

1000 74606

result:

ok 2 number(s): "1000 74606"

Test #5:

score: 10
Accepted
time: 84ms
memory: 3876kb

input:

102 4199
2 48 2147483647 42
1 48 1 42
2 85 2147483647 50
1 85 1 50
2 22 2147483647 83
1 22 1 83
2 95 2147483647 97
1 95 1 97
2 82 2147483647 34
1 82 1 34
2 25 2147483647 72
1 25 1 72
2 4 2147483647 17
1 4 1 17
2 47 2147483647 10
1 47 1 10
2 71 2147483647 12
1 71 1 12
2 68 2147483647 39
1 68 1 39
2 2...

output:

2000 161420

result:

ok 2 number(s): "2000 161420"

Test #6:

score: 10
Accepted
time: 83ms
memory: 3836kb

input:

102 4199
2 79 2147483647 13
1 79 1 13
2 83 2147483647 73
1 83 1 73
2 75 2147483647 90
1 75 1 90
2 30 2147483647 92
1 30 1 92
2 54 2147483647 25
1 54 1 25
2 66 2147483647 53
1 66 1 53
2 52 2147483647 37
1 52 1 37
2 63 2147483647 46
1 63 1 46
2 11 2147483647 20
1 11 1 20
2 55 2147483647 53
1 55 1 53
2...

output:

2000 143072

result:

ok 2 number(s): "2000 143072"

Test #7:

score: 10
Accepted
time: 80ms
memory: 3900kb

input:

102 4199
2 39 2147483647 45
1 39 1 45
2 51 2147483647 11
1 51 1 11
2 86 2147483647 63
1 86 1 63
2 23 2147483647 46
1 23 1 46
2 48 2147483647 63
1 48 1 63
2 87 2147483647 8
1 87 1 8
2 73 2147483647 63
1 73 1 63
2 5 2147483647 52
1 5 1 52
2 80 2147483647 21
1 80 1 21
2 31 2147483647 44
1 31 1 44
2 101...

output:

2000 146132

result:

ok 2 number(s): "2000 146132"

Test #8:

score: 10
Accepted
time: 615ms
memory: 4040kb

input:

302 10599
2 72 2147483647 169
1 72 1 169
2 260 2147483647 165
1 260 1 165
2 12 2147483647 108
1 12 1 108
2 16 2147483647 26
1 16 1 26
2 28 2147483647 148
1 28 1 148
2 7 2147483647 74
1 7 1 74
2 139 2147483647 199
1 139 1 199
2 231 2147483647 9
1 231 1 9
2 287 2147483647 123
1 287 1 123
2 135 2147483...

output:

5000 1106316

result:

ok 2 number(s): "5000 1106316"

Test #9:

score: 10
Accepted
time: 727ms
memory: 4052kb

input:

302 10599
2 222 2147483647 132
1 222 1 132
2 17 2147483647 7
1 17 1 7
2 177 2147483647 253
1 177 1 253
2 90 2147483647 195
1 90 1 195
2 128 2147483647 289
1 128 1 289
2 42 2147483647 193
1 42 1 193
2 213 2147483647 133
1 213 1 133
2 263 2147483647 293
1 263 1 293
2 50 2147483647 155
1 50 1 155
2 228...

output:

5000 1290871

result:

ok 2 number(s): "5000 1290871"

Test #10:

score: 10
Accepted
time: 660ms
memory: 4096kb

input:

302 10599
2 176 2147483647 289
1 176 1 289
2 190 2147483647 99
1 190 1 99
2 10 2147483647 96
1 10 1 96
2 240 2147483647 165
1 240 1 165
2 273 2147483647 205
1 273 1 205
2 248 2147483647 194
1 248 1 194
2 220 2147483647 122
1 220 1 122
2 194 2147483647 167
1 194 1 167
2 8 2147483647 67
1 8 1 67
2 227...

output:

5000 1395897

result:

ok 2 number(s): "5000 1395897"