QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#325087#8231. Festival Decoratingucup-team1134#AC ✓1689ms36164kbC++2327.2kb2024-02-11 04:10:092024-10-20 20:04:47

Judging History

你现在查看的是最新测评结果

  • [2024-10-20 20:04:47]
  • 自动重测本题所有获得100分的提交记录
  • 测评结果:AC
  • 用时:1689ms
  • 内存:36164kb
  • [2024-10-20 19:52:41]
  • hack成功,自动添加数据
  • (/hack/1018)
  • [2024-02-11 04:10:10]
  • 评测
  • 测评结果:100
  • 用时:1687ms
  • 内存:36336kb
  • [2024-02-11 04:10:09]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=250025,INF=1<<30;

#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")


//modint+畳み込み+逆元テーブル

// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)

#include <algorithm>
#include <array>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        int ceil_pow2(int n) {
            int x = 0;
            while ((1U << x) < (unsigned int)(n)) x++;
            return x;
        }
        
        int bsf(unsigned int n) {
#ifdef _MSC_VER
            unsigned long index;
            _BitScanForward(&index, n);
            return index;
#else
            return __builtin_ctz(n);
#endif
        }
        
    }  // namespace internal
    
}  // namespace atcoder



#include <utility>

namespace atcoder {
    
    namespace internal {
        
        constexpr long long safe_mod(long long x, long long m) {
            x %= m;
            if (x < 0) x += m;
            return x;
        }
        
        struct barrett {
            unsigned int _m;
            unsigned long long im;
            
            barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
            
            unsigned int umod() const { return _m; }
            
            unsigned int mul(unsigned int a, unsigned int b) const {
                
                unsigned long long z = a;
                z *= b;
#ifdef _MSC_VER
                unsigned long long x;
                _umul128(z, im, &x);
#else
                unsigned long long x =
                (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
                unsigned int v = (unsigned int)(z - x * _m);
                if (_m <= v) v += _m;
                return v;
            }
        };
        
        constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
            if (m == 1) return 0;
            unsigned int _m = (unsigned int)(m);
            unsigned long long r = 1;
            unsigned long long y = safe_mod(x, m);
            while (n) {
                if (n & 1) r = (r * y) % _m;
                y = (y * y) % _m;
                n >>= 1;
            }
            return r;
        }
        
        constexpr bool is_prime_constexpr(int n) {
            if (n <= 1) return false;
            if (n == 2 || n == 7 || n == 61) return true;
            if (n % 2 == 0) return false;
            long long d = n - 1;
            while (d % 2 == 0) d /= 2;
            for (long long a : {2, 7, 61}) {
                long long t = d;
                long long y = pow_mod_constexpr(a, t, n);
                while (t != n - 1 && y != 1 && y != n - 1) {
                    y = y * y % n;
                    t <<= 1;
                }
                if (y != n - 1 && t % 2 == 0) {
                    return false;
                }
            }
            return true;
        }
        template <int n> constexpr bool is_prime = is_prime_constexpr(n);
        
        constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
            a = safe_mod(a, b);
            if (a == 0) return {b, 0};
            
            long long s = b, t = a;
            long long m0 = 0, m1 = 1;
            
            while (t) {
                long long u = s / t;
                s -= t * u;
                m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
                
                
                auto tmp = s;
                s = t;
                t = tmp;
                tmp = m0;
                m0 = m1;
                m1 = tmp;
            }
            if (m0 < 0) m0 += b / s;
            return {s, m0};
        }
        
        constexpr int primitive_root_constexpr(int m) {
            if (m == 2) return 1;
            if (m == 167772161) return 3;
            if (m == 469762049) return 3;
            if (m == 754974721) return 11;
            if (m == 998244353) return 3;
            int divs[20] = {};
            divs[0] = 2;
            int cnt = 1;
            int x = (m - 1) / 2;
            while (x % 2 == 0) x /= 2;
            for (int i = 3; (long long)(i)*i <= x; i += 2) {
                if (x % i == 0) {
                    divs[cnt++] = i;
                    while (x % i == 0) {
                        x /= i;
                    }
                }
            }
            if (x > 1) {
                divs[cnt++] = x;
            }
            for (int g = 2;; g++) {
                bool ok = true;
                for (int i = 0; i < cnt; i++) {
                    if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                        ok = false;
                        break;
                    }
                }
                if (ok) return g;
            }
        }
        template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
        
    }  // namespace internal
    
}  // namespace atcoder


#include <cassert>
#include <numeric>
#include <type_traits>

namespace atcoder {
    
    namespace internal {
        
#ifndef _MSC_VER
        template <class T>
        using is_signed_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value ||
        std::is_same<T, __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int128 =
        typename std::conditional<std::is_same<T, __uint128_t>::value ||
        std::is_same<T, unsigned __int128>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using make_unsigned_int128 =
        typename std::conditional<std::is_same<T, __int128_t>::value,
        __uint128_t,
        unsigned __int128>;
        
        template <class T>
        using is_integral = typename std::conditional<std::is_integral<T>::value ||
        is_signed_int128<T>::value ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                         std::is_signed<T>::value) ||
        is_signed_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<(is_integral<T>::value &&
                                   std::is_unsigned<T>::value) ||
        is_unsigned_int128<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<
        is_signed_int128<T>::value,
        make_unsigned_int128<T>,
        typename std::conditional<std::is_signed<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type>::type;
        
#else
        
        template <class T> using is_integral = typename std::is_integral<T>;
        
        template <class T>
        using is_signed_int =
        typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using is_unsigned_int =
        typename std::conditional<is_integral<T>::value &&
        std::is_unsigned<T>::value,
        std::true_type,
        std::false_type>::type;
        
        template <class T>
        using to_unsigned = typename std::conditional<is_signed_int<T>::value,
        std::make_unsigned<T>,
        std::common_type<T>>::type;
        
#endif
        
        template <class T>
        using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
        
        template <class T>
        using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
        
        template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <numeric>
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {
    
    namespace internal {
        
        struct modint_base {};
        struct static_modint_base : modint_base {};
        
        template <class T> using is_modint = std::is_base_of<modint_base, T>;
        template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
        
    }  // namespace internal
    
    template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
    struct static_modint : internal::static_modint_base {
        using mint = static_modint;
        
    public:
        static constexpr int mod() { return m; }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        static_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        static_modint(T v) {
            long long x = (long long)(v % (long long)(umod()));
            if (x < 0) x += umod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        static_modint(T v) {
            _v = (unsigned int)(v % umod());
        }
        static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v -= rhs._v;
            if (_v >= umod()) _v += umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            unsigned long long z = _v;
            z *= rhs._v;
            _v = (unsigned int)(z % umod());
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            if (prime) {
                assert(_v);
                return pow(umod() - 2);
            } else {
                auto eg = internal::inv_gcd(_v, m);
                assert(eg.first == 1);
                return eg.second;
            }
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static constexpr unsigned int umod() { return m; }
        static constexpr bool prime = internal::is_prime<m>;
    };
    
    template <int id> struct dynamic_modint : internal::modint_base {
        using mint = dynamic_modint;
        
    public:
        static int mod() { return (int)(bt.umod()); }
        static void set_mod(int m) {
            assert(1 <= m);
            bt = internal::barrett(m);
        }
        static mint raw(int v) {
            mint x;
            x._v = v;
            return x;
        }
        
        dynamic_modint() : _v(0) {}
        template <class T, internal::is_signed_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            long long x = (long long)(v % (long long)(mod()));
            if (x < 0) x += mod();
            _v = (unsigned int)(x);
        }
        template <class T, internal::is_unsigned_int_t<T>* = nullptr>
        dynamic_modint(T v) {
            _v = (unsigned int)(v % mod());
        }
        dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
        
        unsigned int val() const { return _v; }
        
        mint& operator++() {
            _v++;
            if (_v == umod()) _v = 0;
            return *this;
        }
        mint& operator--() {
            if (_v == 0) _v = umod();
            _v--;
            return *this;
        }
        mint operator++(int) {
            mint result = *this;
            ++*this;
            return result;
        }
        mint operator--(int) {
            mint result = *this;
            --*this;
            return result;
        }
        
        mint& operator+=(const mint& rhs) {
            _v += rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator-=(const mint& rhs) {
            _v += mod() - rhs._v;
            if (_v >= umod()) _v -= umod();
            return *this;
        }
        mint& operator*=(const mint& rhs) {
            _v = bt.mul(_v, rhs._v);
            return *this;
        }
        mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
        
        mint operator+() const { return *this; }
        mint operator-() const { return mint() - *this; }
        
        mint pow(long long n) const {
            assert(0 <= n);
            mint x = *this, r = 1;
            while (n) {
                if (n & 1) r *= x;
                x *= x;
                n >>= 1;
            }
            return r;
        }
        mint inv() const {
            auto eg = internal::inv_gcd(_v, mod());
            assert(eg.first == 1);
            return eg.second;
        }
        
        friend mint operator+(const mint& lhs, const mint& rhs) {
            return mint(lhs) += rhs;
        }
        friend mint operator-(const mint& lhs, const mint& rhs) {
            return mint(lhs) -= rhs;
        }
        friend mint operator*(const mint& lhs, const mint& rhs) {
            return mint(lhs) *= rhs;
        }
        friend mint operator/(const mint& lhs, const mint& rhs) {
            return mint(lhs) /= rhs;
        }
        friend bool operator==(const mint& lhs, const mint& rhs) {
            return lhs._v == rhs._v;
        }
        friend bool operator!=(const mint& lhs, const mint& rhs) {
            return lhs._v != rhs._v;
        }
        
    private:
        unsigned int _v;
        static internal::barrett bt;
        static unsigned int umod() { return bt.umod(); }
    };
    template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
    
    using modint998244353 = static_modint<998244353>;
    using modint1000000007 = static_modint<1000000007>;
    using modint = dynamic_modint<-1>;
    
    namespace internal {
        
        template <class T>
        using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
        
        template <class T>
        using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
        
        template <class> struct is_dynamic_modint : public std::false_type {};
        template <int id>
        struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
        
        template <class T>
        using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
        
    }  // namespace internal
    
}  // namespace atcoder

#include <cassert>
#include <type_traits>
#include <vector>

namespace atcoder {
    
    namespace internal {
        
        template <class mint, internal::is_static_modint_t<mint>* = nullptr>
        void butterfly(std::vector<mint>& a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);
            
            static bool first = true;
            static mint sum_e[30];  // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i < cnt2 - 2; i++) {
                    sum_e[i] = es[i] * now;
                    now *= ies[i];
                }
            }
            for (int ph = 1; ph <= h; ph++) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint now = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p] * now;
                        a[i + offset] = l + r;
                        a[i + offset + p] = l - r;
                    }
                    now *= sum_e[bsf(~(unsigned int)(s))];
                }
            }
        }
        
        template <class mint, internal::is_static_modint_t<mint>* = nullptr>
        void butterfly_inv(std::vector<mint>& a) {
            static constexpr int g = internal::primitive_root<mint::mod()>;
            int n = int(a.size());
            int h = internal::ceil_pow2(n);
            
            static bool first = true;
            static mint sum_ie[30];  // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
            if (first) {
                first = false;
                mint es[30], ies[30];  // es[i]^(2^(2+i)) == 1
                int cnt2 = bsf(mint::mod() - 1);
                mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
                for (int i = cnt2; i >= 2; i--) {
                    es[i - 2] = e;
                    ies[i - 2] = ie;
                    e *= e;
                    ie *= ie;
                }
                mint now = 1;
                for (int i = 0; i < cnt2 - 2; i++) {
                    sum_ie[i] = ies[i] * now;
                    now *= es[i];
                }
            }
            
            for (int ph = h; ph >= 1; ph--) {
                int w = 1 << (ph - 1), p = 1 << (h - ph);
                mint inow = 1;
                for (int s = 0; s < w; s++) {
                    int offset = s << (h - ph + 1);
                    for (int i = 0; i < p; i++) {
                        auto l = a[i + offset];
                        auto r = a[i + offset + p];
                        a[i + offset] = l + r;
                        a[i + offset + p] =
                        (unsigned long long)(mint::mod() + l.val() - r.val()) *
                        inow.val();
                    }
                    inow *= sum_ie[bsf(~(unsigned int)(s))];
                }
            }
        }
        
    }  // namespace internal
    
    template <class mint, internal::is_static_modint_t<mint>* = nullptr>
    std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        if (std::min(n, m) <= 60) {
            if (n < m) {
                std::swap(n, m);
                std::swap(a, b);
            }
            std::vector<mint> ans(n + m - 1);
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < m; j++) {
                    ans[i + j] += a[i] * b[j];
                }
            }
            return ans;
        }
        int z = 1 << internal::ceil_pow2(n + m - 1);
        a.resize(z);
        internal::butterfly(a);
        b.resize(z);
        internal::butterfly(b);
        for (int i = 0; i < z; i++) {
            a[i] *= b[i];
        }
        internal::butterfly_inv(a);
        a.resize(n + m - 1);
        mint iz = mint(z).inv();
        for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
        return a;
    }
    
    template <unsigned int mod = 998244353,
    class T,
    std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
    std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        
        using mint = static_modint<mod>;
        std::vector<mint> a2(n), b2(m);
        for (int i = 0; i < n; i++) {
            a2[i] = mint(a[i]);
        }
        for (int i = 0; i < m; i++) {
            b2[i] = mint(b[i]);
        }
        auto c2 = convolution(move(a2), move(b2));
        std::vector<T> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            c[i] = c2[i].val();
        }
        return c;
    }
    
    std::vector<long long> convolution_ll(const std::vector<long long>& a,
                                          const std::vector<long long>& b) {
        int n = int(a.size()), m = int(b.size());
        if (!n || !m) return {};
        
        static constexpr unsigned long long MOD1 = 754974721;  // 2^24
        static constexpr unsigned long long MOD2 = 167772161;  // 2^25
        static constexpr unsigned long long MOD3 = 469762049;  // 2^26
        static constexpr unsigned long long M2M3 = MOD2 * MOD3;
        static constexpr unsigned long long M1M3 = MOD1 * MOD3;
        static constexpr unsigned long long M1M2 = MOD1 * MOD2;
        static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
        
        static constexpr unsigned long long i1 =
        internal::inv_gcd(MOD2 * MOD3, MOD1).second;
        static constexpr unsigned long long i2 =
        internal::inv_gcd(MOD1 * MOD3, MOD2).second;
        static constexpr unsigned long long i3 =
        internal::inv_gcd(MOD1 * MOD2, MOD3).second;
        
        auto c1 = convolution<MOD1>(a, b);
        auto c2 = convolution<MOD2>(a, b);
        auto c3 = convolution<MOD3>(a, b);
        
        std::vector<long long> c(n + m - 1);
        for (int i = 0; i < n + m - 1; i++) {
            unsigned long long x = 0;
            x += (c1[i] * i1) % MOD1 * M2M3;
            x += (c2[i] * i2) % MOD2 * M1M3;
            x += (c3[i] * i3) % MOD3 * M1M2;
            long long diff =
            c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
            if (diff < 0) diff += MOD1;
            static constexpr unsigned long long offset[5] = {
                0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
            x -= offset[diff % 5];
            c[i] = x;
        }
        
        return c;
    }
    
}  // namespace atcoder

using mint=atcoder::modint998244353;

mint inv[MAX],fac[MAX],finv[MAX];

void make(){
    
    fac[0]=fac[1]=1;
    finv[0]=finv[1]=1;
    inv[1]=1;
    
    for(int i=2;i<MAX;i++){
        inv[i]=-inv[mod%i]*(mod/i);
        fac[i]=fac[i-1]*i;
        finv[i]=finv[i-1]*inv[i];
    }
}

mint comb(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[b]*finv[a-b];
}

mint perm(ll a,ll b){
    if(a<b) return 0;
    return fac[a]*finv[a-b];
}

const int D=10000;
int wh[MAX],color[MAX],cn[MAX];
bool seen[MAX];
double sav[MAX];

vector<int> pos[MAX];

bool aru[10][MAX];

int main(){
    
    std::ifstream in("text.txt");
    std::cin.rdbuf(in.rdbuf());
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    int N,Q;cin>>N>>Q;
    vector<pair<int,int>> S(N+1);
    for(int i=1;i<=N;i++){
        int a,b;cin>>a>>b;
        color[a]=b;
        wh[a]=i;
        S[i]=mp(a,b);
        cn[b]++;
        pos[b].push_back(a);
    }
    
    vector<int> kukan={250000};
    while(kukan.back()>3170){
        kukan.push_back((kukan.back())/2.98);
        if(kukan.back()&1) kukan.back()++;
    }
    
    reverse(all(kukan));
    
    for(int q=1;q<si(kukan);q++){
        int L=kukan[q-1]+1,R=kukan[q];
        
        vector<ll> A(MAX),B(MAX);
        
        for(int i=1;i<=N;i++) B[S[i].fi]++;
        
        for(int i=L;i<=R;i++){
            if(i<=N){
                if(cn[S[i].se]>=D){
                    
                }else{
                    A[MAX-S[i].fi]++;
                }
            }
        }
        
        auto C=atcoder::convolution(A,B);
        
        for(int i=L;i<=R;i++){
            if(i<=N){
                if(cn[S[i].se]>=D){
                    
                }else{
                    for(int y:pos[S[i].se]){
                        C[MAX-S[i].fi+y]--;
                    }
                }
            }
        }
        
        for(int i=1;i<MAX-5;i++){
            if(C[MAX+i]) aru[q][i]=true;
        }
        
        for(int c=1;c<MAX;c++){
            if(cn[c]>=D){
                vector<ll> X(MAX),Y=B;
                for(int y:pos[c]){
                    if(L<=wh[y]&&wh[y]<=R){
                        X[MAX-y]++;
                    }
                    Y[y]--;
                }
                auto Z=atcoder::convolution(X,Y);
                for(int i=1;i<MAX-5;i++){
                    if(Z[MAX+i]) aru[q][i]=true;
                }
            }
        }
    }
    while(Q--){
        int d;cin>>d;
        
        double ans=0;
        for(int a=1;a<=min(N,3200);a++){
            int x=S[a].fi,y=x+d;
            if(y<MAX&&color[x]&&color[y]&&color[x]!=color[y]){
                ans=a;
                break;
            }
        }
        if(ans>=0.9){
            cout<<fixed<<setprecision(20)<<ans<<"\n";
            continue;
        }
        
        for(int q=1;q<=4;q++){
            if(aru[q][d]){
                ans=kukan[q]/2;
                break;
            }
        }
        
        cout<<fixed<<setprecision(20)<<ans<<"\n";
        continue;
    }
}


这程序好像有点Bug,我给组数据试试?

详细

Test #1:

score: 100
Accepted
time: 127ms
memory: 22920kb

input:

4 5
3 1
1 2
5 1
6 2
1
2
3
4
5

output:

3.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
0.00000000000000000000

result:

ok 5 numbers

Test #2:

score: 0
Accepted
time: 228ms
memory: 23044kb

input:

10000 99999
67296 2
19835 1
93435 1
12756 2
38971 2
58322 2
4419 1
58583 1
68865 1
14192 1
66909 1
31419 2
40656 2
60289 2
79053 1
82880 1
28930 2
46115 1
9805 1
45096 2
29874 1
37171 2
55385 2
69812 1
16845 2
36030 2
58316 1
53401 1
35239 1
40363 1
29811 2
46440 2
98911 1
86466 2
9707 1
41909 2
616...

output:

49.00000000000000000000
104.00000000000000000000
14.00000000000000000000
51.00000000000000000000
106.00000000000000000000
7.00000000000000000000
3.00000000000000000000
38.00000000000000000000
14.00000000000000000000
2.00000000000000000000
2.00000000000000000000
23.00000000000000000000
19.00000000000...

result:

ok 99999 numbers

Test #3:

score: 0
Accepted
time: 444ms
memory: 31608kb

input:

30000 99999
51883 1
2142 1
69096 2
63011 1
70418 2
56529 1
65292 2
28901 2
78364 1
96477 1
43396 2
84388 1
29343 2
41141 2
94692 1
91222 1
30872 2
17288 2
11547 1
81095 2
16542 1
38652 1
54120 2
83684 2
70599 1
55085 1
91457 1
37800 1
46297 1
81164 1
79807 2
58484 1
43670 1
7180 2
58437 1
96924 2
63...

output:

2.00000000000000000000
1.00000000000000000000
3.00000000000000000000
26.00000000000000000000
6.00000000000000000000
10.00000000000000000000
15.00000000000000000000
6.00000000000000000000
3.00000000000000000000
4.00000000000000000000
1.00000000000000000000
7.00000000000000000000
4.0000000000000000000...

result:

ok 99999 numbers

Test #4:

score: 0
Accepted
time: 524ms
memory: 34092kb

input:

100000 249999
101558 1
226768 2
215012 1
223802 2
3723 1
154951 1
95152 1
188191 2
128933 2
30706 1
141077 1
8377 2
160084 2
56011 1
11556 1
233668 2
42420 2
78212 1
245580 1
25824 2
61180 1
178193 2
179736 1
25607 2
160052 2
56056 2
93163 1
206849 2
28049 2
120634 2
44385 1
188594 1
195761 2
143744...

output:

10.00000000000000000000
5.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
10.00000000000000000000
3.00000000000000000000
2.00000000000000000000
3.00000000000000000000
9.00000000000000000000
7.00000000000000000000
1.00000000000000000000...

result:

ok 249999 numbers

Test #5:

score: 0
Accepted
time: 518ms
memory: 34192kb

input:

150000 249999
29678 2
204012 1
242341 1
55873 2
133195 1
191930 2
158651 2
118376 2
166685 2
52303 2
77713 1
201614 2
135192 2
195257 1
42453 1
42856 1
205245 1
86911 2
192969 1
30106 1
78525 2
140326 2
144700 1
42186 1
215224 2
19113 2
160246 1
159685 1
10602 1
137178 1
102450 1
137587 2
171123 2
1...

output:

1.00000000000000000000
8.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
8.00000000000000000000
5.00000000000000000000
6.00000000000000000000
4.00000000000000000000
3.00000000000000000000
3.00000000000000000000
2.00000000000000000000
3...

result:

ok 249999 numbers

Test #6:

score: 0
Accepted
time: 523ms
memory: 34892kb

input:

200000 249999
6248 1
183259 1
153451 2
85616 1
114994 2
98565 1
151656 1
220307 1
178381 2
11378 2
229267 2
229745 2
121994 2
127081 1
49355 1
227953 2
110071 1
227824 1
18185 2
140762 2
98797 1
3337 1
229512 2
31126 2
180753 1
206940 1
130823 2
115947 2
201783 1
113674 2
155525 2
112976 2
66144 1
1...

output:

2.00000000000000000000
4.00000000000000000000
3.00000000000000000000
3.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
4.00000000000000000000
3.00000000000000000000
1.00000000000000000000
7.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #7:

score: 0
Accepted
time: 523ms
memory: 34812kb

input:

250000 249999
43395 2
176047 2
182604 2
174584 1
84087 1
171284 2
62939 2
167394 1
91843 1
6316 1
172364 1
60476 1
137969 2
164958 1
49683 2
230414 1
106627 1
120532 1
245073 2
179049 2
34146 2
88698 1
150706 1
99450 1
241792 2
70708 1
69060 2
175739 1
38005 2
65970 1
66335 2
182109 1
32837 1
71265 ...

output:

1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
2.00000000000000000000
1.00000000000000000000
8.00000000000000000000
3.00000000000000000000
2...

result:

ok 249999 numbers

Test #8:

score: 0
Accepted
time: 637ms
memory: 32292kb

input:

100000 249999
15193 3
145839 3
79432 1
108888 2
236993 3
238864 2
96951 2
249086 3
46743 1
32398 3
138017 3
52120 2
230778 2
21656 3
62564 3
208611 2
108357 1
235637 2
247827 1
247624 2
128781 2
13021 1
55702 2
43874 1
126878 2
177432 3
30826 3
100406 3
7564 1
201946 2
52522 3
249872 1
79661 3
13976...

output:

6.00000000000000000000
10.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
3.00000000000000000000
9.00000000000000000000
2.00000000000000000000
4.00000000000000000000
3.00000000000000000000
2.00000000000000000000
4.00000000000000000000
...

result:

ok 249999 numbers

Test #9:

score: 0
Accepted
time: 662ms
memory: 33984kb

input:

150000 249999
151797 3
132264 2
228119 2
62624 3
122655 1
93048 2
120758 3
96298 1
127189 3
79578 1
233029 1
166678 2
73775 2
132317 2
51322 1
6343 1
176933 2
106261 1
36493 2
159428 3
112870 3
117448 3
93008 1
154295 2
190828 2
74969 1
240852 1
46624 2
241429 3
65645 1
212721 2
110548 2
118236 2
20...

output:

2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
4.00000000000000000000
4.00000000000000000000
2.00000000000000000000
3.00000000000000000000
6.00000000000000000000
4...

result:

ok 249999 numbers

Test #10:

score: 0
Accepted
time: 642ms
memory: 34624kb

input:

200000 249999
47041 3
73295 1
221000 1
53265 2
201031 3
222816 2
231867 2
175711 2
150407 1
172427 1
241001 2
192843 2
13671 1
231028 3
208391 2
171533 2
166545 2
97954 3
192317 2
208872 1
231857 1
113741 1
219000 1
192008 3
112701 1
244639 3
224948 1
13585 2
184997 1
179230 3
149300 1
169950 1
9416...

output:

3.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
3.00000000000000000000
3.00000000000000000000
3.00000000000000000000
2.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #11:

score: 0
Accepted
time: 649ms
memory: 33916kb

input:

250000 249999
18119 2
48006 3
232814 2
214885 3
10886 3
761 1
28565 2
127342 3
100481 2
91912 2
169408 3
198992 3
32749 2
20324 3
32474 1
38005 2
240939 2
215900 2
200682 1
432 1
5669 3
84940 3
56161 1
203677 1
241950 1
113041 1
138836 3
153159 3
81938 1
61416 3
239183 2
180390 3
83045 3
107312 1
22...

output:

2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
4.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3...

result:

ok 249999 numbers

Test #12:

score: 0
Accepted
time: 1689ms
memory: 33736kb

input:

100000 249999
224336 2
97421 4
237741 10
33517 3
217556 5
236052 6
13864 5
189562 1
209432 1
150833 7
94408 10
220716 3
83847 9
61678 7
95666 3
36542 1
162104 1
158517 6
33248 8
43402 1
18134 8
112042 9
202559 9
183144 6
24872 6
27758 7
217309 8
73017 1
59520 9
187721 10
100252 6
138484 7
165554 7
1...

output:

5.00000000000000000000
10.00000000000000000000
6.00000000000000000000
1.00000000000000000000
1.00000000000000000000
5.00000000000000000000
1.00000000000000000000
3.00000000000000000000
7.00000000000000000000
2.00000000000000000000
1.00000000000000000000
4.00000000000000000000
8.00000000000000000000
...

result:

ok 249999 numbers

Test #13:

score: 0
Accepted
time: 1540ms
memory: 33544kb

input:

150000 249999
166792 6
238330 4
84379 10
131925 6
168914 7
96461 6
127762 9
204071 4
243519 8
198906 6
161831 7
131281 8
115061 10
69493 4
208817 9
4190 10
195480 10
51511 6
80200 5
81104 6
131338 8
100895 2
207427 4
237681 3
206143 4
224139 6
17948 8
228982 10
200256 8
36233 9
146742 6
162442 2
165...

output:

1.00000000000000000000
3.00000000000000000000
2.00000000000000000000
2.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
3...

result:

ok 249999 numbers

Test #14:

score: 0
Accepted
time: 1536ms
memory: 34136kb

input:

200000 249999
200627 8
155259 8
116629 3
7460 8
212178 2
236426 2
247999 4
58552 9
226174 3
136423 3
68187 1
223717 1
115991 3
96943 9
99300 3
196487 3
82852 9
21321 8
146283 2
173037 8
22904 7
198079 10
22919 1
95543 6
237838 2
248787 7
186160 8
201677 8
44573 7
55166 3
60479 6
247478 2
247081 10
3...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
4.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #15:

score: 0
Accepted
time: 1533ms
memory: 36160kb

input:

250000 249999
14095 6
220950 6
234662 3
35913 1
132258 4
200544 10
135104 7
148916 1
13117 5
190176 9
222898 8
91946 4
178090 4
18354 1
151369 2
12233 6
228757 6
161742 7
33667 9
79810 1
74379 10
162789 3
196843 7
223296 9
78881 10
103789 5
84979 7
234254 5
80219 2
27415 7
65636 6
245431 4
16975 7
2...

output:

2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #16:

score: 0
Accepted
time: 919ms
memory: 34780kb

input:

250000 249999
234423 1
106490 1
209289 1
86924 1
54501 1
166355 1
228761 1
165944 1
172158 1
64661 1
167348 1
196763 1
98465 1
56621 1
138329 1
149908 1
58448 1
231726 1
171821 1
203962 1
80624 1
299 1
16257 1
193382 1
226372 1
103199 1
160198 1
206884 1
43643 1
246448 1
197980 1
164317 1
228968 1
1...

output:

0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0.00000000000000000000
0...

result:

ok 249999 numbers

Test #17:

score: 0
Accepted
time: 412ms
memory: 24892kb

input:

100000 249999
93220 59
126118 58
114760 31
127602 91
78964 37
107468 28
17418 34
20051 6
25078 32
238158 11
143557 45
177110 45
101603 44
55221 8
27168 33
12698 44
96309 71
228393 7
85535 53
161888 73
97093 73
177327 72
151564 44
113400 33
80491 47
62362 93
15475 4
134593 67
204219 69
128232 67
1335...

output:

1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
11.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
4.00000000000000000000
3.00000000000000000000
...

result:

ok 249999 numbers

Test #18:

score: 0
Accepted
time: 632ms
memory: 25652kb

input:

150000 249999
104484 72
183971 17
236903 47
85763 51
109721 7
115135 100
162866 62
13428 6
134736 85
108324 46
94466 1
175154 17
72231 54
166036 34
198137 84
146960 74
90976 26
210020 89
205699 80
7068 76
192964 51
93065 27
166315 35
80521 64
41842 13
83346 79
119551 5
96204 72
97493 66
92835 15
312...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
4.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #19:

score: 0
Accepted
time: 950ms
memory: 24892kb

input:

200000 249999
47102 39
120564 49
211340 98
112018 76
128324 79
13658 56
145481 5
212577 92
153372 83
195457 13
67116 53
183188 95
159717 50
223315 42
123415 47
143994 74
39260 51
58850 22
198700 27
22129 53
244348 12
112600 33
93161 52
165358 80
162648 46
238139 8
224484 6
236710 2
45342 99
44056 3
...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #20:

score: 0
Accepted
time: 1350ms
memory: 27200kb

input:

250000 249999
113549 52
245740 8
25655 22
218082 47
132245 45
218861 28
37315 30
111164 95
14826 36
107398 37
156792 14
48628 66
132434 72
28151 59
158589 94
7348 97
56728 5
190552 8
170423 55
65115 44
106177 86
202419 88
183685 47
200452 7
72434 8
161099 94
95797 19
92937 7
75848 100
238323 38
1721...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #21:

score: 0
Accepted
time: 266ms
memory: 24164kb

input:

100000 249999
215178 78
137308 320
85918 996
37671 196
229886 523
231932 923
231942 388
174478 949
3670 606
187312 514
113705 684
239037 255
207483 436
54280 528
227569 162
29778 206
139135 341
39789 362
191291 41
102694 729
208895 941
57449 360
30418 630
123629 754
39958 20
220635 888
43818 148
531...

output:

2.00000000000000000000
3.00000000000000000000
2.00000000000000000000
3.00000000000000000000
4.00000000000000000000
1.00000000000000000000
5.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #22:

score: 0
Accepted
time: 290ms
memory: 25288kb

input:

150000 249999
168799 574
236614 391
5626 61
80977 154
38826 825
210532 62
100484 431
137419 781
103555 171
155556 287
247529 26
33559 487
177031 92
195197 875
91976 329
199343 636
83803 545
106072 247
123800 617
25942 788
235116 540
75666 678
240796 87
116602 682
229461 207
234450 428
235548 279
159...

output:

1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
3.00000000000000000000
4.00000000000000000000
1...

result:

ok 249999 numbers

Test #23:

score: 0
Accepted
time: 323ms
memory: 26400kb

input:

200000 249999
220479 940
50222 148
184880 27
222833 69
4952 631
43460 820
140864 16
15536 585
121758 416
81558 785
139693 320
164815 379
6191 763
223454 81
202200 271
68519 74
25162 498
51853 454
170830 650
123228 426
131945 392
191834 517
152172 502
117499 506
103682 415
245558 424
146040 951
87752...

output:

1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #24:

score: 0
Accepted
time: 365ms
memory: 27080kb

input:

250000 249999
71099 140
102518 514
183279 196
9460 731
155766 741
159169 471
240491 548
72124 713
92079 572
102680 262
27525 958
1818 610
245646 611
85560 428
14629 438
195435 311
30920 702
105014 531
9136 11
134312 381
88919 991
56603 642
102308 551
68202 138
12583 498
88565 667
69470 82
213748 540...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #25:

score: 0
Accepted
time: 255ms
memory: 25292kb

input:

100000 249999
143875 3079
35794 9717
78870 1826
154059 3784
185253 1989
50422 6248
142560 6933
142367 7270
199873 8171
232637 2149
766 6740
128174 8273
174253 2020
71559 974
33140 3168
247328 4196
235516 7852
118076 6395
165442 1875
15428 8418
143016 5686
122930 6
97686 6807
215402 719
152923 7495
1...

output:

2.00000000000000000000
5.00000000000000000000
1.00000000000000000000
4.00000000000000000000
1.00000000000000000000
5.00000000000000000000
2.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2...

result:

ok 249999 numbers

Test #26:

score: 0
Accepted
time: 272ms
memory: 25608kb

input:

150000 249999
208515 1037
226810 8037
78579 8990
196348 454
52075 3057
210394 7076
132508 6037
33903 3827
45161 3699
181439 3102
81472 8711
241071 8091
177966 9734
10995 5634
142541 4395
150681 2847
64108 3634
236691 6727
44362 3578
91381 3400
115765 7253
95492 6997
86886 4546
137861 3681
89217 9885...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #27:

score: 0
Accepted
time: 257ms
memory: 25956kb

input:

200000 249999
19515 6770
260 7289
46752 6511
235290 1326
69396 2617
218263 711
68770 3615
160983 5021
74125 2662
245771 8858
224783 7181
235656 4986
163114 3041
101632 1797
64682 4595
22763 4476
145956 9767
50440 3970
20831 9646
32979 365
147294 5959
5700 3518
167684 258
105791 2718
129850 8902
2168...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #28:

score: 0
Accepted
time: 280ms
memory: 27624kb

input:

250000 249999
233586 2024
249814 5609
98965 9482
21269 7996
112196 3685
56401 4243
248656 5822
246725 8874
239803 3997
154988 7106
163971 9153
17019 4804
114980 9267
15470 7944
148695 5822
48302 5830
17357 1357
85078 1597
217000 5941
193654 6835
41788 6310
84917 509
111123 2589
219424 5680
217784 85...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #29:

score: 0
Accepted
time: 242ms
memory: 27168kb

input:

100000 249999
218060 20345
27334 62482
125176 75231
164701 51166
191015 8172
197002 40902
212572 96076
79429 83748
8322 65763
117710 55688
163851 18354
61106 26868
169159 5528
85864 73608
229644 69531
69326 96862
136553 87015
41717 8087
3709 40727
233990 84886
99712 32178
217040 75596
149456 83736
1...

output:

1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
4.00000000000000000000
1.00000000000000000000
3.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
2.00000000000000000000
3...

result:

ok 249999 numbers

Test #30:

score: 0
Accepted
time: 257ms
memory: 30748kb

input:

150000 249999
234931 117721
165760 121374
39901 90389
65401 36642
127661 143888
111190 11903
248547 55018
25670 51452
29737 77284
34785 88158
41023 86741
210736 96409
45042 131729
156818 38710
102234 58616
229573 45925
240495 63260
27301 13493
239464 120694
57130 18370
65373 113177
200234 111599
813...

output:

1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
4.00000000000000000000
1.00000000000000000000
2.00000000000000000000
5.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2...

result:

ok 249999 numbers

Test #31:

score: 0
Accepted
time: 276ms
memory: 32888kb

input:

200000 249999
115119 166519
203638 63359
136662 96182
198943 18205
186741 173012
170532 142299
132543 22820
152237 171263
248127 46558
134531 159448
113450 155775
26555 131466
9868 37421
45419 144841
199395 140829
110924 34275
83572 11001
48496 65156
133341 100284
141543 60021
170546 6240
231712 152...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
3.00000000000000000000
1.00000000000000000000
2.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #32:

score: 0
Accepted
time: 281ms
memory: 36164kb

input:

250000 249999
81716 70790
72006 29146
86672 228636
88825 53682
198298 58728
197705 130597
169560 249058
143240 6263
156637 225375
177754 174622
67575 6866
139636 192494
53704 155110
8984 209943
65297 79914
153405 142122
225695 169949
96758 194754
245965 121739
212635 243505
234106 28727
242548 11416...

output:

1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1.00000000000000000000
1...

result:

ok 249999 numbers

Test #33:

score: 0
Accepted
time: 640ms
memory: 30660kb

input:

250000 249999
250000 1
249999 1
249998 2
249997 2
249996 3
249995 3
249994 4
249993 4
249992 5
249991 5
249990 6
249989 6
249988 7
249987 7
249986 8
249985 8
249984 9
249983 9
249982 10
249981 10
249980 11
249979 11
249978 12
249977 12
249976 13
249975 13
249974 14
249973 14
249972 15
249971 15
2499...

output:

3.00000000000000000000
3.00000000000000000000
4.00000000000000000000
5.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #34:

score: 0
Accepted
time: 630ms
memory: 29232kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 2
249996 2
249995 2
249994 3
249993 3
249992 3
249991 4
249990 4
249989 4
249988 5
249987 5
249986 5
249985 6
249984 6
249983 6
249982 7
249981 7
249980 7
249979 8
249978 8
249977 8
249976 9
249975 9
249974 9
249973 10
249972 10
249971 10
249970 11
249...

output:

4.00000000000000000000
4.00000000000000000000
4.00000000000000000000
5.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #35:

score: 0
Accepted
time: 641ms
memory: 26996kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 2
249994 2
249993 2
249992 2
249991 2
249990 3
249989 3
249988 3
249987 3
249986 3
249985 4
249984 4
249983 4
249982 4
249981 4
249980 5
249979 5
249978 5
249977 5
249976 5
249975 6
249974 6
249973 6
249972 6
249971 6
249970 7
249969 ...

output:

6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #36:

score: 0
Accepted
time: 638ms
memory: 25896kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
...

result:

ok 249999 numbers

Test #37:

score: 0
Accepted
time: 680ms
memory: 25256kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
...

result:

ok 249999 numbers

Test #38:

score: 0
Accepted
time: 1188ms
memory: 26116kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.000000000...

result:

ok 249999 numbers

Test #39:

score: 0
Accepted
time: 1280ms
memory: 35508kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
419...

result:

ok 249999 numbers

Test #40:

score: 0
Accepted
time: 890ms
memory: 35804kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.0000000000000...

result:

ok 249999 numbers

Test #41:

score: 0
Accepted
time: 1333ms
memory: 34008kb

input:

100000 250000
100000 1
99999 1
99998 1
99997 1
99996 1
99995 1
99994 1
99993 1
99992 1
99991 1
99990 1
99989 1
99988 1
99987 1
99986 1
99985 1
99984 1
99983 1
99982 1
99981 1
99980 1
99979 1
99978 1
99977 1
99976 1
99975 1
99974 1
99973 1
99972 1
99971 1
99970 1
99969 1
99968 1
99967 1
99966 1
99965...

output:

14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
14076.00000000000000000000
140...

result:

ok 250000 numbers

Test #42:

score: 0
Accepted
time: 632ms
memory: 31380kb

input:

250000 249999
250000 1
249999 1
249998 2
249997 2
249996 3
249995 3
249994 4
249993 4
249992 5
249991 5
249990 6
249989 6
249988 7
249987 7
249986 8
249985 8
249984 9
249983 9
249982 10
249981 10
249980 11
249979 11
249978 12
249977 12
249976 13
249975 13
249974 14
249973 14
249972 15
249971 15
2499...

output:

3.00000000000000000000
3.00000000000000000000
4.00000000000000000000
5.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #43:

score: 0
Accepted
time: 635ms
memory: 28396kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 2
249996 2
249995 2
249994 3
249993 3
249992 3
249991 4
249990 4
249989 4
249988 5
249987 5
249986 5
249985 6
249984 6
249983 6
249982 7
249981 7
249980 7
249979 8
249978 8
249977 8
249976 9
249975 9
249974 9
249973 10
249972 10
249971 10
249970 11
249...

output:

4.00000000000000000000
4.00000000000000000000
4.00000000000000000000
5.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #44:

score: 0
Accepted
time: 635ms
memory: 27948kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 2
249994 2
249993 2
249992 2
249991 2
249990 3
249989 3
249988 3
249987 3
249986 3
249985 4
249984 4
249983 4
249982 4
249981 4
249980 5
249979 5
249978 5
249977 5
249976 5
249975 6
249974 6
249973 6
249972 6
249971 6
249970 7
249969 ...

output:

6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 249999 numbers

Test #45:

score: 0
Accepted
time: 627ms
memory: 26336kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
101.00000000000000000000
...

result:

ok 249999 numbers

Test #46:

score: 0
Accepted
time: 683ms
memory: 25388kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
501.00000000000000000000
...

result:

ok 249999 numbers

Test #47:

score: 0
Accepted
time: 1159ms
memory: 25016kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.00000000000000000000
4723.000000000...

result:

ok 249999 numbers

Test #48:

score: 0
Accepted
time: 1273ms
memory: 34596kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
41946.00000000000000000000
419...

result:

ok 249999 numbers

Test #49:

score: 0
Accepted
time: 896ms
memory: 35684kb

input:

250000 249999
250000 1
249999 1
249998 1
249997 1
249996 1
249995 1
249994 1
249993 1
249992 1
249991 1
249990 1
249989 1
249988 1
249987 1
249986 1
249985 1
249984 1
249983 1
249982 1
249981 1
249980 1
249979 1
249978 1
249977 1
249976 1
249975 1
249974 1
249973 1
249972 1
249971 1
249970 1
249969 ...

output:

125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.00000000000000000000
125000.0000000000000...

result:

ok 249999 numbers

Test #50:

score: 0
Accepted
time: 748ms
memory: 34808kb

input:

250000 250000
250000 1
249999 2
249998 2
249997 2
249996 2
249995 2
249994 2
249993 2
249992 2
249991 2
249990 2
249989 2
249988 2
249987 2
249986 2
249985 2
249984 2
249983 2
249982 2
249981 2
249980 2
249979 2
249978 2
249977 2
249976 2
249975 2
249974 2
249973 2
249972 2
249971 2
249970 2
249969 ...

output:

2.00000000000000000000
3.00000000000000000000
4.00000000000000000000
5.00000000000000000000
6.00000000000000000000
7.00000000000000000000
8.00000000000000000000
9.00000000000000000000
10.00000000000000000000
11.00000000000000000000
12.00000000000000000000
13.00000000000000000000
14.00000000000000000...

result:

ok 250000 numbers

Extra Test:

score: 0
Extra Test Passed