QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#325087 | #8231. Festival Decorating | ucup-team1134# | AC ✓ | 1689ms | 36164kb | C++23 | 27.2kb | 2024-02-11 04:10:09 | 2024-10-20 20:04:47 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return true; } return false; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return true; } return false; }
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define mp make_pair
#define si(x) int(x.size())
const int mod=998244353,MAX=250025,INF=1<<30;
#pragma GCC optimize("O3,unroll-loops")
#pragma GCC target("avx2,bmi,bmi2,lzcnt,popcnt")
//modint+畳み込み+逆元テーブル
// from: https://gist.github.com/yosupo06/ddd51afb727600fd95d9d8ad6c3c80c9
// (based on AtCoder STL)
#include <algorithm>
#include <array>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
#include <utility>
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
struct barrett {
unsigned int _m;
unsigned long long im;
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
unsigned int umod() const { return _m; }
unsigned int mul(unsigned int a, unsigned int b) const {
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
for (long long a : {2, 7, 61}) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
if (m0 < 0) m0 += b / s;
return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <type_traits>
#include <vector>
namespace atcoder {
namespace internal {
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
static constexpr int g = internal::primitive_root<mint::mod()>;
int n = int(a.size());
int h = internal::ceil_pow2(n);
static bool first = true;
static mint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
mint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mint::mod() - 1);
mint e = mint(g).pow((mint::mod() - 1) >> cnt2), ie = e.inv();
for (int i = cnt2; i >= 2; i--) {
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
mint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
mint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
inow.val();
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (std::min(n, m) <= 60) {
if (n < m) {
std::swap(n, m);
std::swap(a, b);
}
std::vector<mint> ans(n + m - 1);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
return ans;
}
int z = 1 << internal::ceil_pow2(n + m - 1);
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(move(a2), move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint=atcoder::modint998244353;
mint inv[MAX],fac[MAX],finv[MAX];
void make(){
fac[0]=fac[1]=1;
finv[0]=finv[1]=1;
inv[1]=1;
for(int i=2;i<MAX;i++){
inv[i]=-inv[mod%i]*(mod/i);
fac[i]=fac[i-1]*i;
finv[i]=finv[i-1]*inv[i];
}
}
mint comb(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[b]*finv[a-b];
}
mint perm(ll a,ll b){
if(a<b) return 0;
return fac[a]*finv[a-b];
}
const int D=10000;
int wh[MAX],color[MAX],cn[MAX];
bool seen[MAX];
double sav[MAX];
vector<int> pos[MAX];
bool aru[10][MAX];
int main(){
std::ifstream in("text.txt");
std::cin.rdbuf(in.rdbuf());
cin.tie(0);
ios::sync_with_stdio(false);
int N,Q;cin>>N>>Q;
vector<pair<int,int>> S(N+1);
for(int i=1;i<=N;i++){
int a,b;cin>>a>>b;
color[a]=b;
wh[a]=i;
S[i]=mp(a,b);
cn[b]++;
pos[b].push_back(a);
}
vector<int> kukan={250000};
while(kukan.back()>3170){
kukan.push_back((kukan.back())/2.98);
if(kukan.back()&1) kukan.back()++;
}
reverse(all(kukan));
for(int q=1;q<si(kukan);q++){
int L=kukan[q-1]+1,R=kukan[q];
vector<ll> A(MAX),B(MAX);
for(int i=1;i<=N;i++) B[S[i].fi]++;
for(int i=L;i<=R;i++){
if(i<=N){
if(cn[S[i].se]>=D){
}else{
A[MAX-S[i].fi]++;
}
}
}
auto C=atcoder::convolution(A,B);
for(int i=L;i<=R;i++){
if(i<=N){
if(cn[S[i].se]>=D){
}else{
for(int y:pos[S[i].se]){
C[MAX-S[i].fi+y]--;
}
}
}
}
for(int i=1;i<MAX-5;i++){
if(C[MAX+i]) aru[q][i]=true;
}
for(int c=1;c<MAX;c++){
if(cn[c]>=D){
vector<ll> X(MAX),Y=B;
for(int y:pos[c]){
if(L<=wh[y]&&wh[y]<=R){
X[MAX-y]++;
}
Y[y]--;
}
auto Z=atcoder::convolution(X,Y);
for(int i=1;i<MAX-5;i++){
if(Z[MAX+i]) aru[q][i]=true;
}
}
}
}
while(Q--){
int d;cin>>d;
double ans=0;
for(int a=1;a<=min(N,3200);a++){
int x=S[a].fi,y=x+d;
if(y<MAX&&color[x]&&color[y]&&color[x]!=color[y]){
ans=a;
break;
}
}
if(ans>=0.9){
cout<<fixed<<setprecision(20)<<ans<<"\n";
continue;
}
for(int q=1;q<=4;q++){
if(aru[q][d]){
ans=kukan[q]/2;
break;
}
}
cout<<fixed<<setprecision(20)<<ans<<"\n";
continue;
}
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 127ms
memory: 22920kb
input:
4 5 3 1 1 2 5 1 6 2 1 2 3 4 5
output:
3.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 0.00000000000000000000
result:
ok 5 numbers
Test #2:
score: 0
Accepted
time: 228ms
memory: 23044kb
input:
10000 99999 67296 2 19835 1 93435 1 12756 2 38971 2 58322 2 4419 1 58583 1 68865 1 14192 1 66909 1 31419 2 40656 2 60289 2 79053 1 82880 1 28930 2 46115 1 9805 1 45096 2 29874 1 37171 2 55385 2 69812 1 16845 2 36030 2 58316 1 53401 1 35239 1 40363 1 29811 2 46440 2 98911 1 86466 2 9707 1 41909 2 616...
output:
49.00000000000000000000 104.00000000000000000000 14.00000000000000000000 51.00000000000000000000 106.00000000000000000000 7.00000000000000000000 3.00000000000000000000 38.00000000000000000000 14.00000000000000000000 2.00000000000000000000 2.00000000000000000000 23.00000000000000000000 19.00000000000...
result:
ok 99999 numbers
Test #3:
score: 0
Accepted
time: 444ms
memory: 31608kb
input:
30000 99999 51883 1 2142 1 69096 2 63011 1 70418 2 56529 1 65292 2 28901 2 78364 1 96477 1 43396 2 84388 1 29343 2 41141 2 94692 1 91222 1 30872 2 17288 2 11547 1 81095 2 16542 1 38652 1 54120 2 83684 2 70599 1 55085 1 91457 1 37800 1 46297 1 81164 1 79807 2 58484 1 43670 1 7180 2 58437 1 96924 2 63...
output:
2.00000000000000000000 1.00000000000000000000 3.00000000000000000000 26.00000000000000000000 6.00000000000000000000 10.00000000000000000000 15.00000000000000000000 6.00000000000000000000 3.00000000000000000000 4.00000000000000000000 1.00000000000000000000 7.00000000000000000000 4.0000000000000000000...
result:
ok 99999 numbers
Test #4:
score: 0
Accepted
time: 524ms
memory: 34092kb
input:
100000 249999 101558 1 226768 2 215012 1 223802 2 3723 1 154951 1 95152 1 188191 2 128933 2 30706 1 141077 1 8377 2 160084 2 56011 1 11556 1 233668 2 42420 2 78212 1 245580 1 25824 2 61180 1 178193 2 179736 1 25607 2 160052 2 56056 2 93163 1 206849 2 28049 2 120634 2 44385 1 188594 1 195761 2 143744...
output:
10.00000000000000000000 5.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 10.00000000000000000000 3.00000000000000000000 2.00000000000000000000 3.00000000000000000000 9.00000000000000000000 7.00000000000000000000 1.00000000000000000000...
result:
ok 249999 numbers
Test #5:
score: 0
Accepted
time: 518ms
memory: 34192kb
input:
150000 249999 29678 2 204012 1 242341 1 55873 2 133195 1 191930 2 158651 2 118376 2 166685 2 52303 2 77713 1 201614 2 135192 2 195257 1 42453 1 42856 1 205245 1 86911 2 192969 1 30106 1 78525 2 140326 2 144700 1 42186 1 215224 2 19113 2 160246 1 159685 1 10602 1 137178 1 102450 1 137587 2 171123 2 1...
output:
1.00000000000000000000 8.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 8.00000000000000000000 5.00000000000000000000 6.00000000000000000000 4.00000000000000000000 3.00000000000000000000 3.00000000000000000000 2.00000000000000000000 3...
result:
ok 249999 numbers
Test #6:
score: 0
Accepted
time: 523ms
memory: 34892kb
input:
200000 249999 6248 1 183259 1 153451 2 85616 1 114994 2 98565 1 151656 1 220307 1 178381 2 11378 2 229267 2 229745 2 121994 2 127081 1 49355 1 227953 2 110071 1 227824 1 18185 2 140762 2 98797 1 3337 1 229512 2 31126 2 180753 1 206940 1 130823 2 115947 2 201783 1 113674 2 155525 2 112976 2 66144 1 1...
output:
2.00000000000000000000 4.00000000000000000000 3.00000000000000000000 3.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 4.00000000000000000000 3.00000000000000000000 1.00000000000000000000 7.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #7:
score: 0
Accepted
time: 523ms
memory: 34812kb
input:
250000 249999 43395 2 176047 2 182604 2 174584 1 84087 1 171284 2 62939 2 167394 1 91843 1 6316 1 172364 1 60476 1 137969 2 164958 1 49683 2 230414 1 106627 1 120532 1 245073 2 179049 2 34146 2 88698 1 150706 1 99450 1 241792 2 70708 1 69060 2 175739 1 38005 2 65970 1 66335 2 182109 1 32837 1 71265 ...
output:
1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 2.00000000000000000000 1.00000000000000000000 8.00000000000000000000 3.00000000000000000000 2...
result:
ok 249999 numbers
Test #8:
score: 0
Accepted
time: 637ms
memory: 32292kb
input:
100000 249999 15193 3 145839 3 79432 1 108888 2 236993 3 238864 2 96951 2 249086 3 46743 1 32398 3 138017 3 52120 2 230778 2 21656 3 62564 3 208611 2 108357 1 235637 2 247827 1 247624 2 128781 2 13021 1 55702 2 43874 1 126878 2 177432 3 30826 3 100406 3 7564 1 201946 2 52522 3 249872 1 79661 3 13976...
output:
6.00000000000000000000 10.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 3.00000000000000000000 9.00000000000000000000 2.00000000000000000000 4.00000000000000000000 3.00000000000000000000 2.00000000000000000000 4.00000000000000000000 ...
result:
ok 249999 numbers
Test #9:
score: 0
Accepted
time: 662ms
memory: 33984kb
input:
150000 249999 151797 3 132264 2 228119 2 62624 3 122655 1 93048 2 120758 3 96298 1 127189 3 79578 1 233029 1 166678 2 73775 2 132317 2 51322 1 6343 1 176933 2 106261 1 36493 2 159428 3 112870 3 117448 3 93008 1 154295 2 190828 2 74969 1 240852 1 46624 2 241429 3 65645 1 212721 2 110548 2 118236 2 20...
output:
2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 4.00000000000000000000 4.00000000000000000000 2.00000000000000000000 3.00000000000000000000 6.00000000000000000000 4...
result:
ok 249999 numbers
Test #10:
score: 0
Accepted
time: 642ms
memory: 34624kb
input:
200000 249999 47041 3 73295 1 221000 1 53265 2 201031 3 222816 2 231867 2 175711 2 150407 1 172427 1 241001 2 192843 2 13671 1 231028 3 208391 2 171533 2 166545 2 97954 3 192317 2 208872 1 231857 1 113741 1 219000 1 192008 3 112701 1 244639 3 224948 1 13585 2 184997 1 179230 3 149300 1 169950 1 9416...
output:
3.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 3.00000000000000000000 3.00000000000000000000 3.00000000000000000000 2.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #11:
score: 0
Accepted
time: 649ms
memory: 33916kb
input:
250000 249999 18119 2 48006 3 232814 2 214885 3 10886 3 761 1 28565 2 127342 3 100481 2 91912 2 169408 3 198992 3 32749 2 20324 3 32474 1 38005 2 240939 2 215900 2 200682 1 432 1 5669 3 84940 3 56161 1 203677 1 241950 1 113041 1 138836 3 153159 3 81938 1 61416 3 239183 2 180390 3 83045 3 107312 1 22...
output:
2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 4.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3...
result:
ok 249999 numbers
Test #12:
score: 0
Accepted
time: 1689ms
memory: 33736kb
input:
100000 249999 224336 2 97421 4 237741 10 33517 3 217556 5 236052 6 13864 5 189562 1 209432 1 150833 7 94408 10 220716 3 83847 9 61678 7 95666 3 36542 1 162104 1 158517 6 33248 8 43402 1 18134 8 112042 9 202559 9 183144 6 24872 6 27758 7 217309 8 73017 1 59520 9 187721 10 100252 6 138484 7 165554 7 1...
output:
5.00000000000000000000 10.00000000000000000000 6.00000000000000000000 1.00000000000000000000 1.00000000000000000000 5.00000000000000000000 1.00000000000000000000 3.00000000000000000000 7.00000000000000000000 2.00000000000000000000 1.00000000000000000000 4.00000000000000000000 8.00000000000000000000 ...
result:
ok 249999 numbers
Test #13:
score: 0
Accepted
time: 1540ms
memory: 33544kb
input:
150000 249999 166792 6 238330 4 84379 10 131925 6 168914 7 96461 6 127762 9 204071 4 243519 8 198906 6 161831 7 131281 8 115061 10 69493 4 208817 9 4190 10 195480 10 51511 6 80200 5 81104 6 131338 8 100895 2 207427 4 237681 3 206143 4 224139 6 17948 8 228982 10 200256 8 36233 9 146742 6 162442 2 165...
output:
1.00000000000000000000 3.00000000000000000000 2.00000000000000000000 2.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 3...
result:
ok 249999 numbers
Test #14:
score: 0
Accepted
time: 1536ms
memory: 34136kb
input:
200000 249999 200627 8 155259 8 116629 3 7460 8 212178 2 236426 2 247999 4 58552 9 226174 3 136423 3 68187 1 223717 1 115991 3 96943 9 99300 3 196487 3 82852 9 21321 8 146283 2 173037 8 22904 7 198079 10 22919 1 95543 6 237838 2 248787 7 186160 8 201677 8 44573 7 55166 3 60479 6 247478 2 247081 10 3...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 4.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #15:
score: 0
Accepted
time: 1533ms
memory: 36160kb
input:
250000 249999 14095 6 220950 6 234662 3 35913 1 132258 4 200544 10 135104 7 148916 1 13117 5 190176 9 222898 8 91946 4 178090 4 18354 1 151369 2 12233 6 228757 6 161742 7 33667 9 79810 1 74379 10 162789 3 196843 7 223296 9 78881 10 103789 5 84979 7 234254 5 80219 2 27415 7 65636 6 245431 4 16975 7 2...
output:
2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #16:
score: 0
Accepted
time: 919ms
memory: 34780kb
input:
250000 249999 234423 1 106490 1 209289 1 86924 1 54501 1 166355 1 228761 1 165944 1 172158 1 64661 1 167348 1 196763 1 98465 1 56621 1 138329 1 149908 1 58448 1 231726 1 171821 1 203962 1 80624 1 299 1 16257 1 193382 1 226372 1 103199 1 160198 1 206884 1 43643 1 246448 1 197980 1 164317 1 228968 1 1...
output:
0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 0...
result:
ok 249999 numbers
Test #17:
score: 0
Accepted
time: 412ms
memory: 24892kb
input:
100000 249999 93220 59 126118 58 114760 31 127602 91 78964 37 107468 28 17418 34 20051 6 25078 32 238158 11 143557 45 177110 45 101603 44 55221 8 27168 33 12698 44 96309 71 228393 7 85535 53 161888 73 97093 73 177327 72 151564 44 113400 33 80491 47 62362 93 15475 4 134593 67 204219 69 128232 67 1335...
output:
1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 11.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 4.00000000000000000000 3.00000000000000000000 ...
result:
ok 249999 numbers
Test #18:
score: 0
Accepted
time: 632ms
memory: 25652kb
input:
150000 249999 104484 72 183971 17 236903 47 85763 51 109721 7 115135 100 162866 62 13428 6 134736 85 108324 46 94466 1 175154 17 72231 54 166036 34 198137 84 146960 74 90976 26 210020 89 205699 80 7068 76 192964 51 93065 27 166315 35 80521 64 41842 13 83346 79 119551 5 96204 72 97493 66 92835 15 312...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 4.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #19:
score: 0
Accepted
time: 950ms
memory: 24892kb
input:
200000 249999 47102 39 120564 49 211340 98 112018 76 128324 79 13658 56 145481 5 212577 92 153372 83 195457 13 67116 53 183188 95 159717 50 223315 42 123415 47 143994 74 39260 51 58850 22 198700 27 22129 53 244348 12 112600 33 93161 52 165358 80 162648 46 238139 8 224484 6 236710 2 45342 99 44056 3 ...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #20:
score: 0
Accepted
time: 1350ms
memory: 27200kb
input:
250000 249999 113549 52 245740 8 25655 22 218082 47 132245 45 218861 28 37315 30 111164 95 14826 36 107398 37 156792 14 48628 66 132434 72 28151 59 158589 94 7348 97 56728 5 190552 8 170423 55 65115 44 106177 86 202419 88 183685 47 200452 7 72434 8 161099 94 95797 19 92937 7 75848 100 238323 38 1721...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #21:
score: 0
Accepted
time: 266ms
memory: 24164kb
input:
100000 249999 215178 78 137308 320 85918 996 37671 196 229886 523 231932 923 231942 388 174478 949 3670 606 187312 514 113705 684 239037 255 207483 436 54280 528 227569 162 29778 206 139135 341 39789 362 191291 41 102694 729 208895 941 57449 360 30418 630 123629 754 39958 20 220635 888 43818 148 531...
output:
2.00000000000000000000 3.00000000000000000000 2.00000000000000000000 3.00000000000000000000 4.00000000000000000000 1.00000000000000000000 5.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #22:
score: 0
Accepted
time: 290ms
memory: 25288kb
input:
150000 249999 168799 574 236614 391 5626 61 80977 154 38826 825 210532 62 100484 431 137419 781 103555 171 155556 287 247529 26 33559 487 177031 92 195197 875 91976 329 199343 636 83803 545 106072 247 123800 617 25942 788 235116 540 75666 678 240796 87 116602 682 229461 207 234450 428 235548 279 159...
output:
1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 3.00000000000000000000 4.00000000000000000000 1...
result:
ok 249999 numbers
Test #23:
score: 0
Accepted
time: 323ms
memory: 26400kb
input:
200000 249999 220479 940 50222 148 184880 27 222833 69 4952 631 43460 820 140864 16 15536 585 121758 416 81558 785 139693 320 164815 379 6191 763 223454 81 202200 271 68519 74 25162 498 51853 454 170830 650 123228 426 131945 392 191834 517 152172 502 117499 506 103682 415 245558 424 146040 951 87752...
output:
1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #24:
score: 0
Accepted
time: 365ms
memory: 27080kb
input:
250000 249999 71099 140 102518 514 183279 196 9460 731 155766 741 159169 471 240491 548 72124 713 92079 572 102680 262 27525 958 1818 610 245646 611 85560 428 14629 438 195435 311 30920 702 105014 531 9136 11 134312 381 88919 991 56603 642 102308 551 68202 138 12583 498 88565 667 69470 82 213748 540...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #25:
score: 0
Accepted
time: 255ms
memory: 25292kb
input:
100000 249999 143875 3079 35794 9717 78870 1826 154059 3784 185253 1989 50422 6248 142560 6933 142367 7270 199873 8171 232637 2149 766 6740 128174 8273 174253 2020 71559 974 33140 3168 247328 4196 235516 7852 118076 6395 165442 1875 15428 8418 143016 5686 122930 6 97686 6807 215402 719 152923 7495 1...
output:
2.00000000000000000000 5.00000000000000000000 1.00000000000000000000 4.00000000000000000000 1.00000000000000000000 5.00000000000000000000 2.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2...
result:
ok 249999 numbers
Test #26:
score: 0
Accepted
time: 272ms
memory: 25608kb
input:
150000 249999 208515 1037 226810 8037 78579 8990 196348 454 52075 3057 210394 7076 132508 6037 33903 3827 45161 3699 181439 3102 81472 8711 241071 8091 177966 9734 10995 5634 142541 4395 150681 2847 64108 3634 236691 6727 44362 3578 91381 3400 115765 7253 95492 6997 86886 4546 137861 3681 89217 9885...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #27:
score: 0
Accepted
time: 257ms
memory: 25956kb
input:
200000 249999 19515 6770 260 7289 46752 6511 235290 1326 69396 2617 218263 711 68770 3615 160983 5021 74125 2662 245771 8858 224783 7181 235656 4986 163114 3041 101632 1797 64682 4595 22763 4476 145956 9767 50440 3970 20831 9646 32979 365 147294 5959 5700 3518 167684 258 105791 2718 129850 8902 2168...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #28:
score: 0
Accepted
time: 280ms
memory: 27624kb
input:
250000 249999 233586 2024 249814 5609 98965 9482 21269 7996 112196 3685 56401 4243 248656 5822 246725 8874 239803 3997 154988 7106 163971 9153 17019 4804 114980 9267 15470 7944 148695 5822 48302 5830 17357 1357 85078 1597 217000 5941 193654 6835 41788 6310 84917 509 111123 2589 219424 5680 217784 85...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #29:
score: 0
Accepted
time: 242ms
memory: 27168kb
input:
100000 249999 218060 20345 27334 62482 125176 75231 164701 51166 191015 8172 197002 40902 212572 96076 79429 83748 8322 65763 117710 55688 163851 18354 61106 26868 169159 5528 85864 73608 229644 69531 69326 96862 136553 87015 41717 8087 3709 40727 233990 84886 99712 32178 217040 75596 149456 83736 1...
output:
1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 4.00000000000000000000 1.00000000000000000000 3.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 2.00000000000000000000 3...
result:
ok 249999 numbers
Test #30:
score: 0
Accepted
time: 257ms
memory: 30748kb
input:
150000 249999 234931 117721 165760 121374 39901 90389 65401 36642 127661 143888 111190 11903 248547 55018 25670 51452 29737 77284 34785 88158 41023 86741 210736 96409 45042 131729 156818 38710 102234 58616 229573 45925 240495 63260 27301 13493 239464 120694 57130 18370 65373 113177 200234 111599 813...
output:
1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 4.00000000000000000000 1.00000000000000000000 2.00000000000000000000 5.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2...
result:
ok 249999 numbers
Test #31:
score: 0
Accepted
time: 276ms
memory: 32888kb
input:
200000 249999 115119 166519 203638 63359 136662 96182 198943 18205 186741 173012 170532 142299 132543 22820 152237 171263 248127 46558 134531 159448 113450 155775 26555 131466 9868 37421 45419 144841 199395 140829 110924 34275 83572 11001 48496 65156 133341 100284 141543 60021 170546 6240 231712 152...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 3.00000000000000000000 1.00000000000000000000 2.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #32:
score: 0
Accepted
time: 281ms
memory: 36164kb
input:
250000 249999 81716 70790 72006 29146 86672 228636 88825 53682 198298 58728 197705 130597 169560 249058 143240 6263 156637 225375 177754 174622 67575 6866 139636 192494 53704 155110 8984 209943 65297 79914 153405 142122 225695 169949 96758 194754 245965 121739 212635 243505 234106 28727 242548 11416...
output:
1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1.00000000000000000000 1...
result:
ok 249999 numbers
Test #33:
score: 0
Accepted
time: 640ms
memory: 30660kb
input:
250000 249999 250000 1 249999 1 249998 2 249997 2 249996 3 249995 3 249994 4 249993 4 249992 5 249991 5 249990 6 249989 6 249988 7 249987 7 249986 8 249985 8 249984 9 249983 9 249982 10 249981 10 249980 11 249979 11 249978 12 249977 12 249976 13 249975 13 249974 14 249973 14 249972 15 249971 15 2499...
output:
3.00000000000000000000 3.00000000000000000000 4.00000000000000000000 5.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #34:
score: 0
Accepted
time: 630ms
memory: 29232kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 2 249996 2 249995 2 249994 3 249993 3 249992 3 249991 4 249990 4 249989 4 249988 5 249987 5 249986 5 249985 6 249984 6 249983 6 249982 7 249981 7 249980 7 249979 8 249978 8 249977 8 249976 9 249975 9 249974 9 249973 10 249972 10 249971 10 249970 11 249...
output:
4.00000000000000000000 4.00000000000000000000 4.00000000000000000000 5.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #35:
score: 0
Accepted
time: 641ms
memory: 26996kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 2 249994 2 249993 2 249992 2 249991 2 249990 3 249989 3 249988 3 249987 3 249986 3 249985 4 249984 4 249983 4 249982 4 249981 4 249980 5 249979 5 249978 5 249977 5 249976 5 249975 6 249974 6 249973 6 249972 6 249971 6 249970 7 249969 ...
output:
6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #36:
score: 0
Accepted
time: 638ms
memory: 25896kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 ...
result:
ok 249999 numbers
Test #37:
score: 0
Accepted
time: 680ms
memory: 25256kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 ...
result:
ok 249999 numbers
Test #38:
score: 0
Accepted
time: 1188ms
memory: 26116kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.000000000...
result:
ok 249999 numbers
Test #39:
score: 0
Accepted
time: 1280ms
memory: 35508kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 419...
result:
ok 249999 numbers
Test #40:
score: 0
Accepted
time: 890ms
memory: 35804kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.0000000000000...
result:
ok 249999 numbers
Test #41:
score: 0
Accepted
time: 1333ms
memory: 34008kb
input:
100000 250000 100000 1 99999 1 99998 1 99997 1 99996 1 99995 1 99994 1 99993 1 99992 1 99991 1 99990 1 99989 1 99988 1 99987 1 99986 1 99985 1 99984 1 99983 1 99982 1 99981 1 99980 1 99979 1 99978 1 99977 1 99976 1 99975 1 99974 1 99973 1 99972 1 99971 1 99970 1 99969 1 99968 1 99967 1 99966 1 99965...
output:
14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 14076.00000000000000000000 140...
result:
ok 250000 numbers
Test #42:
score: 0
Accepted
time: 632ms
memory: 31380kb
input:
250000 249999 250000 1 249999 1 249998 2 249997 2 249996 3 249995 3 249994 4 249993 4 249992 5 249991 5 249990 6 249989 6 249988 7 249987 7 249986 8 249985 8 249984 9 249983 9 249982 10 249981 10 249980 11 249979 11 249978 12 249977 12 249976 13 249975 13 249974 14 249973 14 249972 15 249971 15 2499...
output:
3.00000000000000000000 3.00000000000000000000 4.00000000000000000000 5.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #43:
score: 0
Accepted
time: 635ms
memory: 28396kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 2 249996 2 249995 2 249994 3 249993 3 249992 3 249991 4 249990 4 249989 4 249988 5 249987 5 249986 5 249985 6 249984 6 249983 6 249982 7 249981 7 249980 7 249979 8 249978 8 249977 8 249976 9 249975 9 249974 9 249973 10 249972 10 249971 10 249970 11 249...
output:
4.00000000000000000000 4.00000000000000000000 4.00000000000000000000 5.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #44:
score: 0
Accepted
time: 635ms
memory: 27948kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 2 249994 2 249993 2 249992 2 249991 2 249990 3 249989 3 249988 3 249987 3 249986 3 249985 4 249984 4 249983 4 249982 4 249981 4 249980 5 249979 5 249978 5 249977 5 249976 5 249975 6 249974 6 249973 6 249972 6 249971 6 249970 7 249969 ...
output:
6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 249999 numbers
Test #45:
score: 0
Accepted
time: 627ms
memory: 26336kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 101.00000000000000000000 ...
result:
ok 249999 numbers
Test #46:
score: 0
Accepted
time: 683ms
memory: 25388kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 501.00000000000000000000 ...
result:
ok 249999 numbers
Test #47:
score: 0
Accepted
time: 1159ms
memory: 25016kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.00000000000000000000 4723.000000000...
result:
ok 249999 numbers
Test #48:
score: 0
Accepted
time: 1273ms
memory: 34596kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 41946.00000000000000000000 419...
result:
ok 249999 numbers
Test #49:
score: 0
Accepted
time: 896ms
memory: 35684kb
input:
250000 249999 250000 1 249999 1 249998 1 249997 1 249996 1 249995 1 249994 1 249993 1 249992 1 249991 1 249990 1 249989 1 249988 1 249987 1 249986 1 249985 1 249984 1 249983 1 249982 1 249981 1 249980 1 249979 1 249978 1 249977 1 249976 1 249975 1 249974 1 249973 1 249972 1 249971 1 249970 1 249969 ...
output:
125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.00000000000000000000 125000.0000000000000...
result:
ok 249999 numbers
Test #50:
score: 0
Accepted
time: 748ms
memory: 34808kb
input:
250000 250000 250000 1 249999 2 249998 2 249997 2 249996 2 249995 2 249994 2 249993 2 249992 2 249991 2 249990 2 249989 2 249988 2 249987 2 249986 2 249985 2 249984 2 249983 2 249982 2 249981 2 249980 2 249979 2 249978 2 249977 2 249976 2 249975 2 249974 2 249973 2 249972 2 249971 2 249970 2 249969 ...
output:
2.00000000000000000000 3.00000000000000000000 4.00000000000000000000 5.00000000000000000000 6.00000000000000000000 7.00000000000000000000 8.00000000000000000000 9.00000000000000000000 10.00000000000000000000 11.00000000000000000000 12.00000000000000000000 13.00000000000000000000 14.00000000000000000...
result:
ok 250000 numbers
Extra Test:
score: 0
Extra Test Passed