QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#298318 | #7901. Basic Substring Structure | ucup-team987# | RE | 1ms | 3620kb | C++23 | 15.9kb | 2024-01-05 23:49:59 | 2024-01-05 23:50:00 |
Judging History
answer
#if __INCLUDE_LEVEL__ == 0
#include __BASE_FILE__
namespace {
int op(int x, int y) { return std::min(x, y); }
int e() { return 0x3f3f3f3f; }
void solve() {
int n;
scan(n);
std::vector<int> s(n);
scan(s);
--s;
const auto sa = atcoder::suffix_array(s, n);
std::vector<int> isa(n);
for (const int i : rep(n)) {
isa[sa[i]] = i;
}
const auto la = atcoder::lcp_array(s, sa);
const atcoder::segtree<int, op, e> seg(la);
const auto lcp = [&](int i, int j) {
if (i == j) {
return n - i;
}
if (std::max(i, j) == n) {
return 0;
}
i = isa[i];
j = isa[j];
if (j < i) {
std::swap(i, j);
}
return seg.prod(i, j);
};
std::vector<int> z(n);
for (const int i : rep(n)) {
z[i] = lcp(0, i);
}
std::vector<std::array<i64, 2>> dec(n + 1);
auto add = [&](int l, int r, int c0, int c1) {
dec[l][0] += c0;
dec[l][1] += c1;
dec[r][0] -= c0;
dec[r][1] -= c1;
};
for (const int i : rep(1, n)) {
// for (const int k : rep(i, i + z[i])) {
// dec[k] += z[i] - (k - i);
// }
// for (const int k : rep(std::min(z[i], i))) {
// dec[k] += z[i] - k;
// }
add(i, i + z[i], z[i] + i, -1);
add(0, std::min(z[i], i), z[i], -1);
}
for (const int i : rep(n)) {
dec[i + 1][0] += dec[i][0];
dec[i + 1][1] += dec[i][1];
}
std::vector<std::map<int, i64>> inc(n);
for (const int i : rep(1, n)) {
if (i + z[i] == n) {
continue;
}
int l = lcp(z[i] + 1, i + z[i] + 1);
if (z[i] < i) {
inc[z[i]][s[i + z[i]]] += 1 + l;
}
chmin(l, i - 1);
if (l == i - 1 && s[i + z[i] + 1 + l] == s[z[i]]) {
l += 1 + lcp(i + z[i] + 1, i + i + z[i] + 1);
}
inc[i + z[i]][s[z[i]]] += 1 + l;
}
i64 ans = 0;
const i64 base = std::accumulate(z.begin(), z.end(), INT64_C(0));
for (const int i : rep(n)) {
i64 cur = base;
cur -= dec[i][0] + dec[i][1] * i;
if (len(inc[i])) {
cur += ranges::max(inc[i] | views::values);
}
ans += cur ^ (i + 1);
}
print(ans);
}
} // namespace
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
int t;
scan(t);
while (t--) {
solve();
}
}
#else // __INCLUDE_LEVEL__
#include <bits/stdc++.h>
namespace atcoder {
namespace internal {
using std::bit_ceil;
int countr_zero(unsigned int n) { return __builtin_ctz(n); }
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class S, auto op, auto e>
struct segtree {
static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
"op must work as S(S, S)");
static_assert(std::is_convertible_v<decltype(e), std::function<S()>>, "e must work as S()");
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
size = (int)internal::bit_ceil((unsigned int)(_n));
log = internal::countr_zero((unsigned int)size);
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)>
int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F>
int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)>
int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F>
int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa = sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T>
std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s, const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
template <class T>
std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x && (x = std::forward<U>(y), true);
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y && (x = std::forward<U>(y), true);
}
template <class T>
concept Range = std::ranges::range<T> && !std::convertible_to<T, std::string_view>;
template <class T>
concept TupleLike = std::__is_tuple_like<T>::value && !Range<T>;
namespace std {
istream& operator>>(istream& is, Range auto&& r) {
for (auto&& e : r) {
is >> e;
}
return is;
}
istream& operator>>(istream& is, TupleLike auto&& t) {
return apply([&](auto&... xs) -> istream& { return (is >> ... >> xs); }, t);
}
ostream& operator<<(ostream& os, Range auto&& r) {
string_view sep = "";
for (auto&& e : r) {
os << exchange(sep, " ") << e;
}
return os;
}
ostream& operator<<(ostream& os, TupleLike auto&& t) {
const auto f = [&](auto&... xs) -> ostream& {
[[maybe_unused]] string_view sep = "";
((os << exchange(sep, " ") << xs), ...);
return os;
};
return apply(f, t);
}
#define DEF_INC_OR_DEC(op) \
auto& operator op(Range auto&& r) { \
for (auto&& e : r) { \
op e; \
} \
return r; \
} \
auto& operator op(TupleLike auto&& t) { \
apply([](auto&... xs) { (op xs, ...); }, t); \
return t; \
}
DEF_INC_OR_DEC(++)
DEF_INC_OR_DEC(--)
#undef DEF_INC_OR_DEC
} // namespace std
void scan(auto&&... xs) { std::cin >> std::tie(xs...); }
void print(auto&&... xs) { std::cout << std::tie(xs...) << '\n'; }
#define FWD(...) static_cast<decltype(__VA_ARGS__)&&>(__VA_ARGS__)
template <class F>
class fix {
public:
explicit fix(F f) : f_(std::move(f)) {}
decltype(auto) operator()(auto&&... xs) const { return f_(std::ref(*this), FWD(xs)...); }
private:
F f_;
};
template <class T>
concept LambdaExpr = std::is_placeholder_v<std::remove_cvref_t<T>> != 0 ||
std::is_bind_expression_v<std::remove_cvref_t<T>>;
auto operator++(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)++; }, FWD(x));
}
auto operator--(LambdaExpr auto&& x, int) {
return std::bind([](auto&& x) -> decltype(auto) { return FWD(x)--; }, FWD(x));
}
#define DEF_UNARY_OP(op) \
auto operator op(LambdaExpr auto&& x) { \
return std::bind([](auto&& x) -> decltype(auto) { return op FWD(x); }, FWD(x)); \
}
DEF_UNARY_OP(++)
DEF_UNARY_OP(--)
DEF_UNARY_OP(+)
DEF_UNARY_OP(-)
DEF_UNARY_OP(~)
DEF_UNARY_OP(!)
DEF_UNARY_OP(*)
DEF_UNARY_OP(&)
#undef DEF_UNARY_OP
#define DEF_BINARY_OP(op) \
template <class T1, class T2> \
requires LambdaExpr<T1> || LambdaExpr<T2> \
auto operator op(T1&& x, T2&& y) { \
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x) op FWD(y); }, \
FWD(x), FWD(y)); \
}
DEF_BINARY_OP(+=)
DEF_BINARY_OP(-=)
DEF_BINARY_OP(*=)
DEF_BINARY_OP(/=)
DEF_BINARY_OP(%=)
DEF_BINARY_OP(^=)
DEF_BINARY_OP(&=)
DEF_BINARY_OP(|=)
DEF_BINARY_OP(<<=)
DEF_BINARY_OP(>>=)
DEF_BINARY_OP(+)
DEF_BINARY_OP(-)
DEF_BINARY_OP(*)
DEF_BINARY_OP(/)
DEF_BINARY_OP(%)
DEF_BINARY_OP(^)
DEF_BINARY_OP(&)
DEF_BINARY_OP(|)
DEF_BINARY_OP(<<)
DEF_BINARY_OP(>>)
DEF_BINARY_OP(==)
DEF_BINARY_OP(!=)
DEF_BINARY_OP(<)
DEF_BINARY_OP(>)
DEF_BINARY_OP(<=)
DEF_BINARY_OP(>=)
DEF_BINARY_OP(&&)
DEF_BINARY_OP(||)
#undef DEF_BINARY_OP
template <class T1, class T2>
requires LambdaExpr<T1> || LambdaExpr<T2>
auto at(T1&& x, T2&& y) {
return std::bind([](auto&& x, auto&& y) -> decltype(auto) { return FWD(x)[FWD(y)]; }, FWD(x),
FWD(y));
}
template <int I>
auto get(LambdaExpr auto&& x) {
return std::bind([](auto&& x) -> decltype(auto) { return std::get<I>(FWD(x)); }, FWD(x));
}
inline auto rep(int l, int r) { return std::views::iota(std::min(l, r), r); }
inline auto rep(int n) { return rep(0, n); }
inline auto rep1(int l, int r) { return rep(l, r + 1); }
inline auto rep1(int n) { return rep(1, n + 1); }
#define len(...) static_cast<int>(ranges::distance(__VA_ARGS__))
using namespace std::literals;
using namespace std::placeholders;
namespace ranges = std::ranges;
namespace views = std::views;
using i64 = std::int64_t;
#endif // __INCLUDE_LEVEL__
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3620kb
input:
2 4 2 1 1 2 12 1 1 4 5 1 4 1 9 1 9 8 10
output:
15 217
result:
ok 2 lines
Test #2:
score: -100
Runtime Error
input:
10000 8 2 1 2 1 1 1 2 2 9 2 2 1 2 1 2 1 2 1 15 2 1 2 1 1 1 1 2 2 1 2 1 2 2 1 2 1 1 10 2 1 1 1 2 2 1 1 2 2 3 2 1 2 11 1 2 2 1 1 2 1 2 2 1 1 14 2 1 1 1 1 2 1 1 1 2 2 1 2 1 12 2 2 2 1 2 2 2 1 1 2 1 2 4 2 1 1 2 8 1 2 2 2 1 2 1 1 8 1 1 2 1 2 1 1 1 6 2 1 1 1 2 2 14 2 2 1 1 1 1 2 2 2 1 2 2 1 1 10 1 2 2 1 1...