QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#298291#7901. Basic Substring Structureucup-team133#RE 0ms3632kbC++2319.1kb2024-01-05 22:59:582024-01-05 22:59:58

Judging History

你现在查看的是最新测评结果

  • [2024-01-05 22:59:58]
  • 评测
  • 测评结果:RE
  • 用时:0ms
  • 内存:3632kb
  • [2024-01-05 22:59:58]
  • 提交

answer

#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif

#include <type_traits>

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T> struct fenwick_tree {
    using U = internal::to_unsigned_t<T>;

  public:
    fenwick_tree() : _n(0) {}
    explicit fenwick_tree(int n) : _n(n), data(n) {}

    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }

    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }

  private:
    int _n;
    std::vector<U> data;

    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};

}  // namespace atcoder

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder

namespace hash_impl {

static constexpr unsigned long long mod = (1ULL << 61) - 1;

struct modint {
    modint() : _v(0) {}
    modint(unsigned long long v) {
        v = (v >> 61) + (v & mod);
        if (v >= mod) v -= mod;
        _v = v;
    }

    unsigned long long val() const { return _v; }

    modint& operator+=(const modint& rhs) {
        _v += rhs._v;
        if (_v >= mod) _v -= mod;
        return *this;
    }
    modint& operator-=(const modint& rhs) {
        if (_v < rhs._v) _v += mod;
        _v -= rhs._v;
        return *this;
    }
    modint& operator*=(const modint& rhs) {
        __uint128_t t = __uint128_t(_v) * rhs._v;
        t = (t >> 61) + (t & mod);
        if (t >= mod) t -= mod;
        _v = t;
        return *this;
    }
    modint& operator/=(const modint& rhs) { return *this = *this * rhs.inv(); }

    modint operator-() const { return modint() - *this; }

    modint pow(long long n) const {
        assert(0 <= n);
        modint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    modint inv() const { return pow(mod - 2); }

    friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs) += rhs; }
    friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs) -= rhs; }
    friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs) *= rhs; }
    friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs) /= rhs; }
    friend bool operator==(const modint& lhs, const modint& rhs) { return lhs._v == rhs._v; }
    friend bool operator!=(const modint& lhs, const modint& rhs) { return lhs._v != rhs._v; }
    friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs._v; }

  private:
    unsigned long long _v;
};

uint64_t generate_base() {
    std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
    std::uniform_int_distribution<uint64_t> rand(2, mod - 1);
    return rand(mt);
}

modint base(generate_base());
std::vector<modint> power{1};

modint get_pow(int n) {
    if (n < int(power.size())) return power[n];
    int m = power.size();
    power.resize(n + 1);
    for (int i = m; i <= n; i++) power[i] = power[i - 1] * base;
    return power[n];
}

};  // namespace hash_impl

struct Hash {
    using mint = hash_impl::modint;
    mint x;
    int len;

    Hash() : x(0), len(0) {}
    Hash(mint x, int len) : x(x), len(len) {}

    Hash& operator+=(const Hash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        len += rhs.len;
        return *this;
    }
    Hash operator+(const Hash& rhs) { return *this += rhs; }
    bool operator==(const Hash& rhs) { return x == rhs.x and len == rhs.len; }
};

struct ReversibleHash {
    using mint = hash_impl::modint;
    mint x, rx;
    int len;

    ReversibleHash() : x(0), rx(0), len(0) {}
    ReversibleHash(mint x) : x(x), rx(x), len(1) {}
    ReversibleHash(mint x, mint rx, int len) : x(x), rx(rx), len(len) {}

    ReversibleHash rev() const { return ReversibleHash(rx, x, len); }

    ReversibleHash operator+=(const ReversibleHash& rhs) {
        x = x * hash_impl::get_pow(rhs.len) + rhs.x;
        rx = rx + rhs.rx * hash_impl::get_pow(len);
        len += rhs.len;
        return *this;
    }
    ReversibleHash operator+(const ReversibleHash& rhs) { return *this += rhs; }
    bool operator==(const ReversibleHash& rhs) { return x == rhs.x and rx == rhs.rx and len == rhs.len; }
};

struct RollingHash {
    using mint = hash_impl::modint;

    RollingHash() : power{mint(1)} {}

    template <typename T> std::vector<mint> build(const T& s) const {
        int n = s.size();
        std::vector<mint> hash(n + 1);
        hash[0] = 0;
        for (int i = 0; i < n; i++) hash[i + 1] = hash[i] * base + s[i];
        return hash;
    }

    template <typename T> mint get(const T& s) const {
        mint res = 0;
        for (const auto& x : s) res = res * base + x;
        return res;
    }

    mint query(const std::vector<mint>& hash, int l, int r) {
        assert(0 <= l && l <= r);
        extend(r - l);
        return hash[r] - hash[l] * power[r - l];
    }

    mint combine(mint h1, mint h2, int h2_len) {
        extend(h2_len);
        return h1 * power[h2_len] + h2;
    }

    int lcp(const std::vector<mint>& a, int l1, int r1, const std::vector<mint>& b, int l2, int r2) {
        int len = std::min(r1 - l1, r2 - l2);
        int lb = 0, ub = len + 1;
        while (ub - lb > 1) {
            int mid = (lb + ub) >> 1;
            (query(a, l1, l1 + mid) == query(b, l2, l2 + mid) ? lb : ub) = mid;
        }
        return lb;
    }

  private:
    const mint base = hash_impl::base;
    std::vector<mint> power;

    inline void extend(int len) {
        if (int(power.size()) > len) return;
        int pre = power.size();
        power.resize(len + 1);
        for (int i = pre - 1; i < len; i++) power[i + 1] = power[i] * base;
    }
};

using namespace std;

typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};

template <class T> istream& operator>>(istream& is, vector<T>& v) {
    for (auto& x : v) is >> x;
    return is;
}

template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
    auto sep = "";
    for (const auto& x : v) os << exchange(sep, " ") << x;
    return os;
}

template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }

template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }

template <class T> void mkuni(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }

void solve() {
    int n;
    cin >> n;
    vector<int> a(n);
    cin >> a;

    vector<ll> res(n), sum(n, n);
    auto z = atcoder::z_algorithm(a);
    {
        // i < j
        atcoder::fenwick_tree<ll> ft_cnt(n + 1), ft_sum(n + 1);
        for (int i = n - 1; i > 0; i--) {
            sum[i] += ft_cnt.sum(i + 1, n + 1) * i;
            sum[i] += ft_sum.sum(0, i + 1);
            ft_cnt.add(z[i], 1);
            ft_sum.add(z[i], z[i]);
        }
    }
    {
        // j <= i
        atcoder::fenwick_tree<ll> ft_cnt(2 * n + 1), ft_sum1(2 * n + 1), ft_sum2(2 * n + 1);
        for (int i = 1; i < n; i++) {
            ft_cnt.add(i + z[i], 1);
            ft_sum1.add(i + z[i], i);
            ft_sum2.add(i + z[i], z[i]);
            sum[i] += ft_cnt.sum(i + 1, 2 * n + 1) * i - ft_sum1.sum(i + 1, 2 * n + 1);
            sum[i] += ft_sum2.sum(0, i + 1);
        }
    }
    vector<vector<int>> change(n);
    for (int i = 1; i < n; i++) {
        if (z[i] > i) change[z[i]].emplace_back(i);
        if (i + z[i] < n) change[i + z[i]].emplace_back(i);
    }
    RollingHash RH;
    auto hash = RH.build(a);
    for (int i = 0; i < n; i++) {
        map<int, ll> mp;
        for (int& j : change[i]) {
            if (i < j) {
                assert(a[i] != a[i + j]);
                mp[a[i + j]] += 1 + RH.lcp(hash, i + 1, n, hash, i + j + 1, n);
            } else {
                assert(a[i - j] != a[i]);
                mp[a[i - j]] += 1 + RH.lcp(hash, i - j + 1, n, hash, i + 1, n);
            }
        }
        ll maxi = 0;
        for (auto [tmp, val] : mp) chmax(maxi, val);
        res[i] = maxi;
    }

    ll ans = 0;
    for (int i = 0; i < n; i++) {
        res[i] += sum[i];
        ans += (res[i] ^ (i + 1));
    }

    cout << ans << '\n';
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int T;
    cin >> T;
    for (; T--;) solve();
    return 0;
}

詳細信息

Test #1:

score: 100
Accepted
time: 0ms
memory: 3632kb

input:

2
4
2 1 1 2
12
1 1 4 5 1 4 1 9 1 9 8 10

output:

15
217

result:

ok 2 lines

Test #2:

score: -100
Runtime Error

input:

10000
8
2 1 2 1 1 1 2 2
9
2 2 1 2 1 2 1 2 1
15
2 1 2 1 1 1 1 2 2 1 2 1 2 2 1
2
1 1
10
2 1 1 1 2 2 1 1 2 2
3
2 1 2
11
1 2 2 1 1 2 1 2 2 1 1
14
2 1 1 1 1 2 1 1 1 2 2 1 2 1
12
2 2 2 1 2 2 2 1 1 2 1 2
4
2 1 1 2
8
1 2 2 2 1 2 1 1
8
1 1 2 1 2 1 1 1
6
2 1 1 1 2 2
14
2 2 1 1 1 1 2 2 2 1 2 2 1 1
10
1 2 2 1 1...

output:


result: