QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#298291 | #7901. Basic Substring Structure | ucup-team133# | RE | 0ms | 3632kb | C++23 | 19.1kb | 2024-01-05 22:59:58 | 2024-01-05 22:59:58 |
Judging History
answer
#include <bits/stdc++.h>
#ifdef LOCAL
#include <debug.hpp>
#else
#define debug(...) void(0)
#endif
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
// Reference: https://en.wikipedia.org/wiki/Fenwick_tree
template <class T> struct fenwick_tree {
using U = internal::to_unsigned_t<T>;
public:
fenwick_tree() : _n(0) {}
explicit fenwick_tree(int n) : _n(n), data(n) {}
void add(int p, T x) {
assert(0 <= p && p < _n);
p++;
while (p <= _n) {
data[p - 1] += U(x);
p += p & -p;
}
}
T sum(int l, int r) {
assert(0 <= l && l <= r && r <= _n);
return sum(r) - sum(l);
}
private:
int _n;
std::vector<U> data;
U sum(int r) {
U s = 0;
while (r > 0) {
s += data[r - 1];
r -= r & -r;
}
return s;
}
};
} // namespace atcoder
namespace atcoder {
namespace internal {
std::vector<int> sa_naive(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n);
std::iota(sa.begin(), sa.end(), 0);
std::sort(sa.begin(), sa.end(), [&](int l, int r) {
if (l == r) return false;
while (l < n && r < n) {
if (s[l] != s[r]) return s[l] < s[r];
l++;
r++;
}
return l == n;
});
return sa;
}
std::vector<int> sa_doubling(const std::vector<int>& s) {
int n = int(s.size());
std::vector<int> sa(n), rnk = s, tmp(n);
std::iota(sa.begin(), sa.end(), 0);
for (int k = 1; k < n; k *= 2) {
auto cmp = [&](int x, int y) {
if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
int rx = x + k < n ? rnk[x + k] : -1;
int ry = y + k < n ? rnk[y + k] : -1;
return rx < ry;
};
std::sort(sa.begin(), sa.end(), cmp);
tmp[sa[0]] = 0;
for (int i = 1; i < n; i++) {
tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
}
std::swap(tmp, rnk);
}
return sa;
}
// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
int n = int(s.size());
if (n == 0) return {};
if (n == 1) return {0};
if (n == 2) {
if (s[0] < s[1]) {
return {0, 1};
} else {
return {1, 0};
}
}
if (n < THRESHOLD_NAIVE) {
return sa_naive(s);
}
if (n < THRESHOLD_DOUBLING) {
return sa_doubling(s);
}
std::vector<int> sa(n);
std::vector<bool> ls(n);
for (int i = n - 2; i >= 0; i--) {
ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
}
std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
for (int i = 0; i < n; i++) {
if (!ls[i]) {
sum_s[s[i]]++;
} else {
sum_l[s[i] + 1]++;
}
}
for (int i = 0; i <= upper; i++) {
sum_s[i] += sum_l[i];
if (i < upper) sum_l[i + 1] += sum_s[i];
}
auto induce = [&](const std::vector<int>& lms) {
std::fill(sa.begin(), sa.end(), -1);
std::vector<int> buf(upper + 1);
std::copy(sum_s.begin(), sum_s.end(), buf.begin());
for (auto d : lms) {
if (d == n) continue;
sa[buf[s[d]]++] = d;
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
sa[buf[s[n - 1]]++] = n - 1;
for (int i = 0; i < n; i++) {
int v = sa[i];
if (v >= 1 && !ls[v - 1]) {
sa[buf[s[v - 1]]++] = v - 1;
}
}
std::copy(sum_l.begin(), sum_l.end(), buf.begin());
for (int i = n - 1; i >= 0; i--) {
int v = sa[i];
if (v >= 1 && ls[v - 1]) {
sa[--buf[s[v - 1] + 1]] = v - 1;
}
}
};
std::vector<int> lms_map(n + 1, -1);
int m = 0;
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms_map[i] = m++;
}
}
std::vector<int> lms;
lms.reserve(m);
for (int i = 1; i < n; i++) {
if (!ls[i - 1] && ls[i]) {
lms.push_back(i);
}
}
induce(lms);
if (m) {
std::vector<int> sorted_lms;
sorted_lms.reserve(m);
for (int v : sa) {
if (lms_map[v] != -1) sorted_lms.push_back(v);
}
std::vector<int> rec_s(m);
int rec_upper = 0;
rec_s[lms_map[sorted_lms[0]]] = 0;
for (int i = 1; i < m; i++) {
int l = sorted_lms[i - 1], r = sorted_lms[i];
int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
bool same = true;
if (end_l - l != end_r - r) {
same = false;
} else {
while (l < end_l) {
if (s[l] != s[r]) {
break;
}
l++;
r++;
}
if (l == n || s[l] != s[r]) same = false;
}
if (!same) rec_upper++;
rec_s[lms_map[sorted_lms[i]]] = rec_upper;
}
auto rec_sa =
sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);
for (int i = 0; i < m; i++) {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(sorted_lms);
}
return sa;
}
} // namespace internal
std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
assert(0 <= upper);
for (int d : s) {
assert(0 <= d && d <= upper);
}
auto sa = internal::sa_is(s, upper);
return sa;
}
template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
int n = int(s.size());
std::vector<int> idx(n);
iota(idx.begin(), idx.end(), 0);
sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
std::vector<int> s2(n);
int now = 0;
for (int i = 0; i < n; i++) {
if (i && s[idx[i - 1]] != s[idx[i]]) now++;
s2[idx[i]] = now;
}
return internal::sa_is(s2, now);
}
std::vector<int> suffix_array(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return internal::sa_is(s2, 255);
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
const std::vector<int>& sa) {
int n = int(s.size());
assert(n >= 1);
std::vector<int> rnk(n);
for (int i = 0; i < n; i++) {
rnk[sa[i]] = i;
}
std::vector<int> lcp(n - 1);
int h = 0;
for (int i = 0; i < n; i++) {
if (h > 0) h--;
if (rnk[i] == 0) continue;
int j = sa[rnk[i] - 1];
for (; j + h < n && i + h < n; h++) {
if (s[j + h] != s[i + h]) break;
}
lcp[rnk[i] - 1] = h;
}
return lcp;
}
std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return lcp_array(s2, sa);
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
int n = int(s.size());
if (n == 0) return {};
std::vector<int> z(n);
z[0] = 0;
for (int i = 1, j = 0; i < n; i++) {
int& k = z[i];
k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
while (i + k < n && s[k] == s[i + k]) k++;
if (j + z[j] < i + z[i]) j = i;
}
z[0] = n;
return z;
}
std::vector<int> z_algorithm(const std::string& s) {
int n = int(s.size());
std::vector<int> s2(n);
for (int i = 0; i < n; i++) {
s2[i] = s[i];
}
return z_algorithm(s2);
}
} // namespace atcoder
namespace hash_impl {
static constexpr unsigned long long mod = (1ULL << 61) - 1;
struct modint {
modint() : _v(0) {}
modint(unsigned long long v) {
v = (v >> 61) + (v & mod);
if (v >= mod) v -= mod;
_v = v;
}
unsigned long long val() const { return _v; }
modint& operator+=(const modint& rhs) {
_v += rhs._v;
if (_v >= mod) _v -= mod;
return *this;
}
modint& operator-=(const modint& rhs) {
if (_v < rhs._v) _v += mod;
_v -= rhs._v;
return *this;
}
modint& operator*=(const modint& rhs) {
__uint128_t t = __uint128_t(_v) * rhs._v;
t = (t >> 61) + (t & mod);
if (t >= mod) t -= mod;
_v = t;
return *this;
}
modint& operator/=(const modint& rhs) { return *this = *this * rhs.inv(); }
modint operator-() const { return modint() - *this; }
modint pow(long long n) const {
assert(0 <= n);
modint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
modint inv() const { return pow(mod - 2); }
friend modint operator+(const modint& lhs, const modint& rhs) { return modint(lhs) += rhs; }
friend modint operator-(const modint& lhs, const modint& rhs) { return modint(lhs) -= rhs; }
friend modint operator*(const modint& lhs, const modint& rhs) { return modint(lhs) *= rhs; }
friend modint operator/(const modint& lhs, const modint& rhs) { return modint(lhs) /= rhs; }
friend bool operator==(const modint& lhs, const modint& rhs) { return lhs._v == rhs._v; }
friend bool operator!=(const modint& lhs, const modint& rhs) { return lhs._v != rhs._v; }
friend std::ostream& operator<<(std::ostream& os, const modint& rhs) { os << rhs._v; }
private:
unsigned long long _v;
};
uint64_t generate_base() {
std::mt19937_64 mt(std::chrono::steady_clock::now().time_since_epoch().count());
std::uniform_int_distribution<uint64_t> rand(2, mod - 1);
return rand(mt);
}
modint base(generate_base());
std::vector<modint> power{1};
modint get_pow(int n) {
if (n < int(power.size())) return power[n];
int m = power.size();
power.resize(n + 1);
for (int i = m; i <= n; i++) power[i] = power[i - 1] * base;
return power[n];
}
}; // namespace hash_impl
struct Hash {
using mint = hash_impl::modint;
mint x;
int len;
Hash() : x(0), len(0) {}
Hash(mint x, int len) : x(x), len(len) {}
Hash& operator+=(const Hash& rhs) {
x = x * hash_impl::get_pow(rhs.len) + rhs.x;
len += rhs.len;
return *this;
}
Hash operator+(const Hash& rhs) { return *this += rhs; }
bool operator==(const Hash& rhs) { return x == rhs.x and len == rhs.len; }
};
struct ReversibleHash {
using mint = hash_impl::modint;
mint x, rx;
int len;
ReversibleHash() : x(0), rx(0), len(0) {}
ReversibleHash(mint x) : x(x), rx(x), len(1) {}
ReversibleHash(mint x, mint rx, int len) : x(x), rx(rx), len(len) {}
ReversibleHash rev() const { return ReversibleHash(rx, x, len); }
ReversibleHash operator+=(const ReversibleHash& rhs) {
x = x * hash_impl::get_pow(rhs.len) + rhs.x;
rx = rx + rhs.rx * hash_impl::get_pow(len);
len += rhs.len;
return *this;
}
ReversibleHash operator+(const ReversibleHash& rhs) { return *this += rhs; }
bool operator==(const ReversibleHash& rhs) { return x == rhs.x and rx == rhs.rx and len == rhs.len; }
};
struct RollingHash {
using mint = hash_impl::modint;
RollingHash() : power{mint(1)} {}
template <typename T> std::vector<mint> build(const T& s) const {
int n = s.size();
std::vector<mint> hash(n + 1);
hash[0] = 0;
for (int i = 0; i < n; i++) hash[i + 1] = hash[i] * base + s[i];
return hash;
}
template <typename T> mint get(const T& s) const {
mint res = 0;
for (const auto& x : s) res = res * base + x;
return res;
}
mint query(const std::vector<mint>& hash, int l, int r) {
assert(0 <= l && l <= r);
extend(r - l);
return hash[r] - hash[l] * power[r - l];
}
mint combine(mint h1, mint h2, int h2_len) {
extend(h2_len);
return h1 * power[h2_len] + h2;
}
int lcp(const std::vector<mint>& a, int l1, int r1, const std::vector<mint>& b, int l2, int r2) {
int len = std::min(r1 - l1, r2 - l2);
int lb = 0, ub = len + 1;
while (ub - lb > 1) {
int mid = (lb + ub) >> 1;
(query(a, l1, l1 + mid) == query(b, l2, l2 + mid) ? lb : ub) = mid;
}
return lb;
}
private:
const mint base = hash_impl::base;
std::vector<mint> power;
inline void extend(int len) {
if (int(power.size()) > len) return;
int pre = power.size();
power.resize(len + 1);
for (int i = pre - 1; i < len; i++) power[i + 1] = power[i] * base;
}
};
using namespace std;
typedef long long ll;
#define all(x) begin(x), end(x)
constexpr int INF = (1 << 30) - 1;
constexpr long long IINF = (1LL << 60) - 1;
constexpr int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
template <class T> istream& operator>>(istream& is, vector<T>& v) {
for (auto& x : v) is >> x;
return is;
}
template <class T> ostream& operator<<(ostream& os, const vector<T>& v) {
auto sep = "";
for (const auto& x : v) os << exchange(sep, " ") << x;
return os;
}
template <class T, class U = T> bool chmin(T& x, U&& y) { return y < x and (x = forward<U>(y), true); }
template <class T, class U = T> bool chmax(T& x, U&& y) { return x < y and (x = forward<U>(y), true); }
template <class T> void mkuni(vector<T>& v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <class T> int lwb(const vector<T>& v, const T& x) { return lower_bound(begin(v), end(v), x) - begin(v); }
void solve() {
int n;
cin >> n;
vector<int> a(n);
cin >> a;
vector<ll> res(n), sum(n, n);
auto z = atcoder::z_algorithm(a);
{
// i < j
atcoder::fenwick_tree<ll> ft_cnt(n + 1), ft_sum(n + 1);
for (int i = n - 1; i > 0; i--) {
sum[i] += ft_cnt.sum(i + 1, n + 1) * i;
sum[i] += ft_sum.sum(0, i + 1);
ft_cnt.add(z[i], 1);
ft_sum.add(z[i], z[i]);
}
}
{
// j <= i
atcoder::fenwick_tree<ll> ft_cnt(2 * n + 1), ft_sum1(2 * n + 1), ft_sum2(2 * n + 1);
for (int i = 1; i < n; i++) {
ft_cnt.add(i + z[i], 1);
ft_sum1.add(i + z[i], i);
ft_sum2.add(i + z[i], z[i]);
sum[i] += ft_cnt.sum(i + 1, 2 * n + 1) * i - ft_sum1.sum(i + 1, 2 * n + 1);
sum[i] += ft_sum2.sum(0, i + 1);
}
}
vector<vector<int>> change(n);
for (int i = 1; i < n; i++) {
if (z[i] > i) change[z[i]].emplace_back(i);
if (i + z[i] < n) change[i + z[i]].emplace_back(i);
}
RollingHash RH;
auto hash = RH.build(a);
for (int i = 0; i < n; i++) {
map<int, ll> mp;
for (int& j : change[i]) {
if (i < j) {
assert(a[i] != a[i + j]);
mp[a[i + j]] += 1 + RH.lcp(hash, i + 1, n, hash, i + j + 1, n);
} else {
assert(a[i - j] != a[i]);
mp[a[i - j]] += 1 + RH.lcp(hash, i - j + 1, n, hash, i + 1, n);
}
}
ll maxi = 0;
for (auto [tmp, val] : mp) chmax(maxi, val);
res[i] = maxi;
}
ll ans = 0;
for (int i = 0; i < n; i++) {
res[i] += sum[i];
ans += (res[i] ^ (i + 1));
}
cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
for (; T--;) solve();
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3632kb
input:
2 4 2 1 1 2 12 1 1 4 5 1 4 1 9 1 9 8 10
output:
15 217
result:
ok 2 lines
Test #2:
score: -100
Runtime Error
input:
10000 8 2 1 2 1 1 1 2 2 9 2 2 1 2 1 2 1 2 1 15 2 1 2 1 1 1 1 2 2 1 2 1 2 2 1 2 1 1 10 2 1 1 1 2 2 1 1 2 2 3 2 1 2 11 1 2 2 1 1 2 1 2 2 1 1 14 2 1 1 1 1 2 1 1 1 2 2 1 2 1 12 2 2 2 1 2 2 2 1 1 2 1 2 4 2 1 1 2 8 1 2 2 2 1 2 1 1 8 1 1 2 1 2 1 1 1 6 2 1 1 1 2 2 14 2 2 1 1 1 1 2 2 2 1 2 2 1 1 10 1 2 2 1 1...