QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#290257 | #6408. Classical Counting Problem | zhangmj2008 | AC ✓ | 327ms | 3560kb | C++17 | 17.7kb | 2023-12-24 16:46:12 | 2023-12-24 16:46:13 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;
template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m < 2^31`
barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned int v = (unsigned int)(z - x * _m);
if (_m <= v) v += _m;
return v;
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
using modint = atcoder::modint998244353;
void solve( ) {
int n , m , v; cin >> n >> m >> v;
vector< int > a( n + 1 ); for( int i = 1; i <= n; i ++ ) cin >> a[i]; sort( a.begin( ) + 1 , a.begin( ) + n + 1 , greater< int >( ) );
modint ans = 0; int W = m * v + 2;
for( int y = 1; y <= n; y ++ ) {
vector< modint > f( W + 1 ); f[0] = 1;
for( int i = n; i >= 1; i -- ) if( a[y] + m - a[i] >= 0 ) {
int i0 = ( i == y ) ? ( 0 ) : ( 1 ); int s0 = min( m , a[y] + m - a[i] );
int i1 = ( i >= y + 1 ) ? ( 0 ) : ( 1 ); int s1 = m;
if( i0 ) {
int x = i;
if( x <= y + 1 && a[x] <= a[y] + m ) {
int s = s0; for( int j = 1; j <= x - 1; j ++ ) s += m;
for( int t = 0; t <= W; t ++ ) if( s + t >= m * v ) ans += f[t];
}
}
vector< modint > nf( W + 1 );
if( i0 ) for( int t = 0; t <= W; t ++ ) nf[min( W , t + s0 )] += f[t];
if( i1 ) for( int t = 0; t <= W; t ++ ) nf[min( W , t + s1 )] += f[t];
f = nf;
}
}
for( int x = 1; x <= n; x ++ ) {
vector< modint > g( W + 1 ); g[0] = 1;
for( int i = 1; i <= n; i ++ ) if( a[x] - a[i] <= m ) {
int i0 = ( i <= x - 1 ) ? ( 0 ) : ( 1 ); int s0 = 0;
int i1 = ( i == x ) ? ( 0 ) : ( 1 ); int s1 = max( 0 , a[x] - a[i] );
if( i1 ) {
int y = i;
if( x <= y + 1 && a[x] <= a[y] + m ) {
int s = s1; for( int j = y + 1; j <= n; j ++ ) s += 0;
for( int t = 0; t <= W; t ++ ) if( s + t > m * v ) ans -= g[t];
}
}
vector< modint > ng( W + 1 );
if( i0 ) for( int t = 0; t <= W; t ++ ) ng[min( W , t + s0 )] += g[t];
if( i1 ) for( int t = 0; t <= W; t ++ ) ng[min( W , t + s1 )] += g[t];
g = ng;
}
}
cout << ( ans + 1 ).val( ) << "\n";
}
int main( ) {
ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
int T; cin >> T; while( T -- ) solve( ); return 0;
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 3560kb
input:
6 3 1 2 1 2 3 3 2 1 1 2 3 10 1 1 0 0 0 0 0 0 0 0 0 0 6 1 2 2 1 1 3 0 2 6 1 5 2 1 1 3 0 2 10 4 8 7 2 3 6 1 6 5 4 6 5
output:
5 6 1023 23 19 240
result:
ok 6 numbers
Test #2:
score: 0
Accepted
time: 0ms
memory: 3536kb
input:
50 2 62 1 67 58 2 23 1 7 39 2 60 1 53 9 2 29 1 3 68 2 52 1 43 76 2 79 1 48 91 2 85 1 18 11 2 34 1 19 24 2 42 1 77 44 2 54 1 80 49 2 90 1 61 55 2 24 1 51 72 2 8 1 9 8 2 83 1 91 0 2 33 1 27 27 2 30 1 8 99 2 52 1 34 87 2 51 1 13 47 2 16 1 0 27 2 63 1 53 76 2 25 1 82 36 2 42 1 53 54 2 12 1 38 70 2 2 1 6...
output:
3 2 3 2 3 3 3 3 3 3 3 3 3 2 3 2 2 3 2 3 2 3 2 2 2 3 3 2 3 3 3 2 2 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3
result:
ok 50 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 3468kb
input:
40 2 20 1 36 90 4 4 3 38 52 64 63 2 89 1 46 65 2 2 1 83 1 3 17 2 19 20 10 2 61 1 33 17 2 91 1 92 59 2 98 1 4 35 2 30 1 66 51 2 4 1 44 16 2 46 1 80 99 3 11 2 80 59 29 3 91 1 80 43 81 2 93 1 74 57 2 78 1 30 77 3 84 1 70 12 29 2 74 1 88 78 3 58 1 22 100 13 3 40 2 79 18 84 4 99 1 32 73 81 73 2 57 1 83 3...
output:
2 5 3 2 6 3 3 3 3 2 3 3 7 3 3 6 3 4 4 15 3 7 2 4 5 2 3 3 2 2 7 3 2 3 3 15 3 3 2 7
result:
ok 40 numbers
Test #4:
score: 0
Accepted
time: 1ms
memory: 3464kb
input:
30 3 82 1 18 19 77 4 22 1 63 42 11 42 2 60 1 25 90 3 87 2 21 47 5 2 50 1 88 81 4 71 1 63 29 19 68 6 69 3 13 4 71 96 73 39 3 83 2 29 88 28 2 56 1 84 20 2 43 1 8 29 2 48 1 43 9 3 88 1 12 88 58 6 42 4 16 33 47 70 66 42 7 71 1 95 96 18 92 9 20 4 3 11 1 64 46 83 2 7 1 72 49 2 35 1 15 24 3 50 2 82 22 48 4...
output:
6 7 2 7 3 12 39 7 2 3 3 6 38 22 3 2 3 5 6 7 7 3 18 2 55 3 4 3 7 7
result:
ok 30 numbers
Test #5:
score: 0
Accepted
time: 1ms
memory: 3512kb
input:
20 7 41 6 9 17 92 61 58 10 96 2 97 1 84 29 2 83 1 52 65 4 28 3 28 81 53 74 9 69 5 10 80 90 1 91 21 81 96 60 3 66 1 21 9 24 7 88 6 34 21 5 100 51 68 88 2 49 1 62 7 2 6 1 10 1 6 21 1 54 0 16 8 61 16 3 22 2 10 13 75 5 20 1 77 4 16 16 38 5 26 4 31 14 85 69 20 3 31 2 36 58 78 11 39 6 47 7 79 15 34 99 29 ...
output:
20 3 3 8 91 7 43 2 2 15 4 9 10 5 117 3 82 15 545 7
result:
ok 20 numbers
Test #6:
score: 0
Accepted
time: 8ms
memory: 3500kb
input:
10 6 32 4 3 64 60 50 71 92 5 17 3 34 22 90 94 35 46 34 44 33 32 55 85 54 4 8 56 87 90 86 88 6 76 12 76 31 80 58 70 99 92 13 59 82 20 25 97 29 64 16 39 57 40 19 17 48 86 6 60 89 99 71 83 95 6 3 62 1 60 0 96 11 85 7 79 92 34 24 79 36 75 89 78 60 5 3 91 2 55 18 29 12 41 5 75 4 81 73 71 93 50 10 43 55 6...
output:
24 10 85407 5 1426 7 647 2 6 19
result:
ok 10 numbers
Test #7:
score: 0
Accepted
time: 4ms
memory: 3500kb
input:
5 40 23 31 75 10 19 30 90 96 40 84 96 20 44 61 24 46 39 56 1 73 54 83 85 3 13 14 45 46 39 99 91 99 48 89 28 75 62 5 24 51 61 11 16 62 2 96 5 95 8 67 28 36 20 20 48 89 64 11 50 56 38 15 53 7 43 10 69 97 98 99 38 88 78 74 57 69 0 78 61 27 67 6 74 37 76 8 74 42 76 6 68 94 49 55 10 28 35 25 17 41 65 85 ...
output:
26111 2098 2839 2739716 3
result:
ok 5 number(s): "26111 2098 2839 2739716 3"
Test #8:
score: 0
Accepted
time: 10ms
memory: 3448kb
input:
4 17 100 14 65 87 80 62 80 85 47 14 13 23 91 39 5 82 59 28 46 14 83 8 46 14 88 24 70 57 14 6 63 18 98 68 20 10 40 94 16 91 33 82 64 50 16 2 64 39 76 75 35 20 0 53 14 74 2 44 83 51 67 97 93 61 77 56 12 29 95 77 7 78 46 85 76 76 38 22 94 29 3 5 27 14 12 21 45 42 2 41 92 27 54 46 15 73 38 99 68 96 79 1...
output:
40145 8703 880766959 64
result:
ok 4 number(s): "40145 8703 880766959 64"
Test #9:
score: 0
Accepted
time: 28ms
memory: 3460kb
input:
3 64 81 26 6 35 9 39 70 29 91 9 54 21 83 73 10 93 96 40 50 92 88 87 71 70 22 45 4 23 18 10 88 71 73 5 49 67 12 28 8 61 73 19 27 89 64 65 94 93 87 61 40 4 37 66 72 100 54 33 80 40 26 46 85 59 1 50 26 6 12 56 37 5 5 3 67 52 53 77 55 39 89 86 55 78 34 83 78 75 51 9 43 2 18 86 14 10 89 1 10 41 16 63 14 ...
output:
923730397 139 230
result:
ok 3 number(s): "923730397 139 230"
Test #10:
score: 0
Accepted
time: 2ms
memory: 3452kb
input:
2 56 3 30 67 80 38 54 30 78 45 29 61 28 97 77 43 38 37 75 54 84 81 32 16 63 2 90 34 95 54 88 2 44 23 37 87 20 78 71 66 4 21 52 99 15 94 4 66 37 41 100 88 26 76 10 16 36 32 63 44 49 2 24 0 0 33 9 3 41 39 91 46 13 12 43 11 68 28 0 31 16 73 21 22 72 53 79 65 92 80 26 62 93 97 48 90 77 11 4 54 19 21 89 ...
output:
267 343867
result:
ok 2 number(s): "267 343867"
Test #11:
score: 0
Accepted
time: 33ms
memory: 3444kb
input:
1 100 97 9 57 74 56 14 12 8 50 94 81 32 50 70 75 66 44 40 51 71 90 59 66 8 81 31 36 7 81 44 53 85 43 45 49 37 63 56 71 20 81 83 71 51 3 78 47 28 13 41 50 32 23 82 52 32 1 83 63 7 97 78 6 71 88 2 98 14 29 83 74 71 81 96 89 30 48 5 64 74 63 74 96 12 2 36 26 75 7 44 66 93 82 31 13 86 5 96 8 10 71 70
output:
421427517
result:
ok 1 number(s): "421427517"
Test #12:
score: 0
Accepted
time: 19ms
memory: 3496kb
input:
1 100 21 58 67 6 11 89 1 59 8 18 80 33 58 27 5 65 73 17 35 15 31 81 18 12 56 9 49 72 74 74 98 25 68 96 10 75 22 48 43 50 9 38 13 38 82 21 37 66 21 86 83 89 0 73 84 39 77 30 66 26 25 89 14 22 71 75 51 70 41 43 12 70 4 25 20 71 62 1 47 79 66 87 87 95 74 63 97 21 83 28 52 90 90 44 34 55 67 69 90 20 62 66
output:
879050745
result:
ok 1 number(s): "879050745"
Test #13:
score: 0
Accepted
time: 8ms
memory: 3556kb
input:
1 100 49 5 41 64 55 30 13 20 100 9 12 45 33 28 25 64 81 71 19 36 83 14 72 16 99 44 95 12 23 3 18 89 49 80 15 23 59 7 16 79 13 61 67 57 60 31 94 3 86 54 80 0 99 74 47 80 64 78 23 56 64 78 55 85 75 59 61 57 53 38 72 70 61 76 7 77 52 30 41 28 1 55 9 77 33 79 56 67 92 46 6 20 29 13 88 47 5 9 83 86 75 19
output:
778551245
result:
ok 1 number(s): "778551245"
Test #14:
score: 0
Accepted
time: 112ms
memory: 3548kb
input:
1 100 73 50 62 54 10 15 91 71 92 68 12 56 77 86 56 74 77 82 71 91 57 48 24 88 41 90 40 8 50 33 96 97 74 30 77 28 52 100 90 98 75 6 53 44 26 75 84 74 94 99 45 80 42 75 10 87 75 93 59 18 24 21 31 47 46 31 70 34 76 33 10 36 51 60 95 51 99 25 25 78 14 57 100 92 72 95 25 81 0 97 94 50 80 48 8 38 77 39 97...
output:
966167597
result:
ok 1 number(s): "966167597"
Test #15:
score: 0
Accepted
time: 29ms
memory: 3480kb
input:
1 100 97 8 72 76 65 90 46 54 39 59 11 35 74 88 76 73 6 35 55 68 99 71 66 93 16 69 54 73 100 31 74 26 66 81 37 9 44 24 95 60 47 29 6 41 4 96 40 44 69 66 78 70 40 99 74 94 51 73 51 37 64 10 72 42 17 71 23 22 88 39 71 24 7 11 83 24 78 21 8 16 50 92 23 74 43 89 85 59 87 3 81 48 87 50 29 7 37 13 21 93 90...
output:
578242220
result:
ok 1 number(s): "578242220"
Test #16:
score: 0
Accepted
time: 20ms
memory: 3456kb
input:
1 100 21 50 24 66 9 30 59 72 31 84 0 36 49 78 96 72 13 45 7 23 39 36 87 75 92 36 100 13 93 61 62 68 47 32 31 48 37 95 35 89 8 86 82 61 83 39 30 49 77 78 76 49 84 67 4 34 27 20 76 0 92 21 80 71 32 22 33 9 10 67 9 24 53 74 13 98 57 50 35 33 52 59 13 23 3 37 44 5 63 20 35 89 27 19 39 31 8 87 2 91 3 44
output:
474759161
result:
ok 1 number(s): "474759161"
Test #17:
score: 0
Accepted
time: 117ms
memory: 3484kb
input:
1 100 49 99 34 100 64 15 47 22 90 75 100 47 25 79 26 3 43 99 2 68 24 70 39 79 34 82 45 10 87 80 6 98 4 15 3 64 63 87 97 40 80 30 35 47 49 17 54 19 85 79 29 60 61 90 24 30 70 67 44 63 30 43 20 66 3 95 43 98 22 62 81 91 9 57 0 3 71 46 18 83 99 72 36 48 42 20 14 18 39 38 22 87 67 21 60 0 70 95 84 0 95 40
output:
3181458
result:
ok 1 number(s): "3181458"
Test #18:
score: 0
Accepted
time: 108ms
memory: 3460kb
input:
1 100 73 46 54 89 87 57 92 73 49 33 32 59 33 36 46 2 50 8 87 56 65 60 13 50 77 28 58 40 69 10 95 39 97 66 65 34 56 46 2 70 52 54 89 67 27 60 77 90 49 90 95 6 59 59 88 70 46 14 69 82 58 55 61 17 76 67 53 86 34 57 8 22 99 8 89 45 62 75 1 21 33 6 16 30 13 47 74 98 47 56 88 49 85 56 49 60 41 69 76 66 86...
output:
353900212
result:
ok 1 number(s): "353900212"
Test #19:
score: 0
Accepted
time: 290ms
memory: 3516kb
input:
1 100 98 91 64 11 31 31 37 23 40 57 32 38 8 38 77 12 47 30 38 10 39 94 67 54 63 74 36 15 62 7 72 69 22 50 58 50 48 38 75 99 46 99 64 86 27 71 0 95 57 91 60 29 2 82 51 78 33 95 61 11 63 66 36 80 80 51 6 40 24 52 79 90 22 60 8 51 41 3 96 71 69 75 6 45 74 63 0 11 23 73 75 47 24 25 70 95 12 42 57 42 99 45
output:
991832540
result:
ok 1 number(s): "991832540"
Test #20:
score: 0
Accepted
time: 120ms
memory: 3524kb
input:
1 100 64 65 80 91 56 8 83 44 39 75 86 39 83 29 32 56 6 44 84 43 6 19 97 94 20 48 69 59 15 79 30 89 98 63 87 95 49 50 53 19 70 16 47 93 78 67 100 59 51 81 82 61 5 62 96 89 33 40 38 19 78 8 7 38 77 55 31 78 27 3 53 20 63 95 38 93 72 12 41 59 38 96 68 47 17 81 14 56 54 83 40 75 9 7 96 55 77 51 48 25 1 78
output:
267899508
result:
ok 1 number(s): "267899508"
Test #21:
score: 0
Accepted
time: 320ms
memory: 3520kb
input:
1 100 100 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...
output:
436278057
result:
ok 1 number(s): "436278057"
Test #22:
score: 0
Accepted
time: 3ms
memory: 3492kb
input:
1 100 1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...
output:
131961966
result:
ok 1 number(s): "131961966"
Test #23:
score: 0
Accepted
time: 7ms
memory: 3524kb
input:
1 100 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...
output:
436278057
result:
ok 1 number(s): "436278057"
Test #24:
score: 0
Accepted
time: 1ms
memory: 3448kb
input:
1 100 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...
output:
131961966
result:
ok 1 number(s): "131961966"
Test #25:
score: 0
Accepted
time: 327ms
memory: 3524kb
input:
1 100 100 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #26:
score: 0
Accepted
time: 4ms
memory: 3556kb
input:
1 100 1 99 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #27:
score: 0
Accepted
time: 6ms
memory: 3492kb
input:
1 100 100 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...
output:
882499717
result:
ok 1 number(s): "882499717"
Test #28:
score: 0
Accepted
time: 1ms
memory: 3448kb
input:
1 100 1 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...
output:
882499717
result:
ok 1 number(s): "882499717"