QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#290257#6408. Classical Counting Problemzhangmj2008AC ✓327ms3560kbC++1717.7kb2023-12-24 16:46:122023-12-24 16:46:13

Judging History

你现在查看的是最新测评结果

  • [2023-12-24 16:46:13]
  • 评测
  • 测评结果:AC
  • 用时:327ms
  • 内存:3560kb
  • [2023-12-24 16:46:12]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

typedef long long ll; typedef unsigned long long ull;
const int INF = 1e9; const ll LLNF = 4e18;

template< class Tp > void chkmax( Tp &x , Tp y ) { x = max( x , y ); }
template< class Tp > void chkmin( Tp &x , Tp y ) { x = min( x , y ); }

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    static_modint(bool v) { _v = ((unsigned int)(v) % umod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt = 998244353;

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder

using modint = atcoder::modint998244353;

void solve( ) {
	int n , m , v; cin >> n >> m >> v;
	vector< int > a( n + 1 ); for( int i = 1; i <= n; i ++ ) cin >> a[i]; sort( a.begin( ) + 1 , a.begin( ) + n + 1 , greater< int >( ) );

	modint ans = 0; int W = m * v + 2;

	for( int y = 1; y <= n; y ++ ) {
		vector< modint > f( W + 1 ); f[0] = 1;
		for( int i = n; i >= 1; i -- ) if( a[y] + m - a[i] >= 0 ) {
			int i0 = ( i == y ) ? ( 0 ) : ( 1 ); int s0 = min( m , a[y] + m - a[i] );
			int i1 = ( i >= y + 1 ) ? ( 0 ) : ( 1 ); int s1 = m;

			if( i0 ) {
				int x = i;
				if( x <= y + 1 && a[x] <= a[y] + m ) {
					int s = s0; for( int j = 1; j <= x - 1; j ++ ) s += m;
					for( int t = 0; t <= W; t ++ ) if( s + t >= m * v ) ans += f[t];
				}
			}

			vector< modint > nf( W + 1 );
			if( i0 ) for( int t = 0; t <= W; t ++ ) nf[min( W , t + s0 )] += f[t];
			if( i1 ) for( int t = 0; t <= W; t ++ ) nf[min( W , t + s1 )] += f[t];
			f = nf;
		}
	}

	for( int x = 1; x <= n; x ++ ) {
		vector< modint > g( W + 1 ); g[0] = 1;
		for( int i = 1; i <= n; i ++ ) if( a[x] - a[i] <= m ) {
			int i0 = ( i <= x - 1 ) ? ( 0 ) : ( 1 ); int s0 = 0;
			int i1 = ( i == x ) ? ( 0 ) : ( 1 ); int s1 = max( 0 , a[x] - a[i] );

			if( i1 ) {
				int y = i;
				if( x <= y + 1 && a[x] <= a[y] + m ) {
					int s = s1; for( int j = y + 1; j <= n; j ++ ) s += 0;
					for( int t = 0; t <= W; t ++ ) if( s + t > m * v ) ans -= g[t];
				}
			}

			vector< modint > ng( W + 1 );
			if( i0 ) for( int t = 0; t <= W; t ++ ) ng[min( W , t + s0 )] += g[t];
			if( i1 ) for( int t = 0; t <= W; t ++ ) ng[min( W , t + s1 )] += g[t];
			g = ng;
		}
	}

	cout << ( ans + 1 ).val( ) << "\n";
}

int main( ) {
	ios::sync_with_stdio( 0 ), cin.tie( 0 ), cout.tie( 0 );
	int T; cin >> T; while( T -- ) solve( ); return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3560kb

input:

6
3 1 2
1 2 3
3 2 1
1 2 3
10 1 1
0 0 0 0 0 0 0 0 0 0
6 1 2
2 1 1 3 0 2
6 1 5
2 1 1 3 0 2
10 4 8
7 2 3 6 1 6 5 4 6 5

output:

5
6
1023
23
19
240

result:

ok 6 numbers

Test #2:

score: 0
Accepted
time: 0ms
memory: 3536kb

input:

50
2 62 1
67 58
2 23 1
7 39
2 60 1
53 9
2 29 1
3 68
2 52 1
43 76
2 79 1
48 91
2 85 1
18 11
2 34 1
19 24
2 42 1
77 44
2 54 1
80 49
2 90 1
61 55
2 24 1
51 72
2 8 1
9 8
2 83 1
91 0
2 33 1
27 27
2 30 1
8 99
2 52 1
34 87
2 51 1
13 47
2 16 1
0 27
2 63 1
53 76
2 25 1
82 36
2 42 1
53 54
2 12 1
38 70
2 2 1
6...

output:

3
2
3
2
3
3
3
3
3
3
3
3
3
2
3
2
2
3
2
3
2
3
2
2
2
3
3
2
3
3
3
2
2
2
3
3
3
2
3
2
3
3
3
3
3
3
3
3
3
3

result:

ok 50 numbers

Test #3:

score: 0
Accepted
time: 1ms
memory: 3468kb

input:

40
2 20 1
36 90
4 4 3
38 52 64 63
2 89 1
46 65
2 2 1
83 1
3 17 2
19 20 10
2 61 1
33 17
2 91 1
92 59
2 98 1
4 35
2 30 1
66 51
2 4 1
44 16
2 46 1
80 99
3 11 2
80 59 29
3 91 1
80 43 81
2 93 1
74 57
2 78 1
30 77
3 84 1
70 12 29
2 74 1
88 78
3 58 1
22 100 13
3 40 2
79 18 84
4 99 1
32 73 81 73
2 57 1
83 3...

output:

2
5
3
2
6
3
3
3
3
2
3
3
7
3
3
6
3
4
4
15
3
7
2
4
5
2
3
3
2
2
7
3
2
3
3
15
3
3
2
7

result:

ok 40 numbers

Test #4:

score: 0
Accepted
time: 1ms
memory: 3464kb

input:

30
3 82 1
18 19 77
4 22 1
63 42 11 42
2 60 1
25 90
3 87 2
21 47 5
2 50 1
88 81
4 71 1
63 29 19 68
6 69 3
13 4 71 96 73 39
3 83 2
29 88 28
2 56 1
84 20
2 43 1
8 29
2 48 1
43 9
3 88 1
12 88 58
6 42 4
16 33 47 70 66 42
7 71 1
95 96 18 92 9 20 4
3 11 1
64 46 83
2 7 1
72 49
2 35 1
15 24
3 50 2
82 22 48
4...

output:

6
7
2
7
3
12
39
7
2
3
3
6
38
22
3
2
3
5
6
7
7
3
18
2
55
3
4
3
7
7

result:

ok 30 numbers

Test #5:

score: 0
Accepted
time: 1ms
memory: 3512kb

input:

20
7 41 6
9 17 92 61 58 10 96
2 97 1
84 29
2 83 1
52 65
4 28 3
28 81 53 74
9 69 5
10 80 90 1 91 21 81 96 60
3 66 1
21 9 24
7 88 6
34 21 5 100 51 68 88
2 49 1
62 7
2 6 1
10 1
6 21 1
54 0 16 8 61 16
3 22 2
10 13 75
5 20 1
77 4 16 16 38
5 26 4
31 14 85 69 20
3 31 2
36 58 78
11 39 6
47 7 79 15 34 99 29 ...

output:

20
3
3
8
91
7
43
2
2
15
4
9
10
5
117
3
82
15
545
7

result:

ok 20 numbers

Test #6:

score: 0
Accepted
time: 8ms
memory: 3500kb

input:

10
6 32 4
3 64 60 50 71 92
5 17 3
34 22 90 94 35
46 34 44
33 32 55 85 54 4 8 56 87 90 86 88 6 76 12 76 31 80 58 70 99 92 13 59 82 20 25 97 29 64 16 39 57 40 19 17 48 86 6 60 89 99 71 83 95 6
3 62 1
60 0 96
11 85 7
79 92 34 24 79 36 75 89 78 60 5
3 91 2
55 18 29
12 41 5
75 4 81 73 71 93 50 10 43 55 6...

output:

24
10
85407
5
1426
7
647
2
6
19

result:

ok 10 numbers

Test #7:

score: 0
Accepted
time: 4ms
memory: 3500kb

input:

5
40 23 31
75 10 19 30 90 96 40 84 96 20 44 61 24 46 39 56 1 73 54 83 85 3 13 14 45 46 39 99 91 99 48 89 28 75 62 5 24 51 61 11
16 62 2
96 5 95 8 67 28 36 20 20 48 89 64 11 50 56 38
15 53 7
43 10 69 97 98 99 38 88 78 74 57 69 0 78 61
27 67 6
74 37 76 8 74 42 76 6 68 94 49 55 10 28 35 25 17 41 65 85 ...

output:

26111
2098
2839
2739716
3

result:

ok 5 number(s): "26111 2098 2839 2739716 3"

Test #8:

score: 0
Accepted
time: 10ms
memory: 3448kb

input:

4
17 100 14
65 87 80 62 80 85 47 14 13 23 91 39 5 82 59 28 46
14 83 8
46 14 88 24 70 57 14 6 63 18 98 68 20 10
40 94 16
91 33 82 64 50 16 2 64 39 76 75 35 20 0 53 14 74 2 44 83 51 67 97 93 61 77 56 12 29 95 77 7 78 46 85 76 76 38 22 94
29 3 5
27 14 12 21 45 42 2 41 92 27 54 46 15 73 38 99 68 96 79 1...

output:

40145
8703
880766959
64

result:

ok 4 number(s): "40145 8703 880766959 64"

Test #9:

score: 0
Accepted
time: 28ms
memory: 3460kb

input:

3
64 81 26
6 35 9 39 70 29 91 9 54 21 83 73 10 93 96 40 50 92 88 87 71 70 22 45 4 23 18 10 88 71 73 5 49 67 12 28 8 61 73 19 27 89 64 65 94 93 87 61 40 4 37 66 72 100 54 33 80 40 26 46 85 59 1 50
26 6 12
56 37 5 5 3 67 52 53 77 55 39 89 86 55 78 34 83 78 75 51 9 43 2 18 86 14
10 89 1
10 41 16 63 14 ...

output:

923730397
139
230

result:

ok 3 number(s): "923730397 139 230"

Test #10:

score: 0
Accepted
time: 2ms
memory: 3452kb

input:

2
56 3 30
67 80 38 54 30 78 45 29 61 28 97 77 43 38 37 75 54 84 81 32 16 63 2 90 34 95 54 88 2 44 23 37 87 20 78 71 66 4 21 52 99 15 94 4 66 37 41 100 88 26 76 10 16 36 32 63
44 49 2
24 0 0 33 9 3 41 39 91 46 13 12 43 11 68 28 0 31 16 73 21 22 72 53 79 65 92 80 26 62 93 97 48 90 77 11 4 54 19 21 89 ...

output:

267
343867

result:

ok 2 number(s): "267 343867"

Test #11:

score: 0
Accepted
time: 33ms
memory: 3444kb

input:

1
100 97 9
57 74 56 14 12 8 50 94 81 32 50 70 75 66 44 40 51 71 90 59 66 8 81 31 36 7 81 44 53 85 43 45 49 37 63 56 71 20 81 83 71 51 3 78 47 28 13 41 50 32 23 82 52 32 1 83 63 7 97 78 6 71 88 2 98 14 29 83 74 71 81 96 89 30 48 5 64 74 63 74 96 12 2 36 26 75 7 44 66 93 82 31 13 86 5 96 8 10 71 70

output:

421427517

result:

ok 1 number(s): "421427517"

Test #12:

score: 0
Accepted
time: 19ms
memory: 3496kb

input:

1
100 21 58
67 6 11 89 1 59 8 18 80 33 58 27 5 65 73 17 35 15 31 81 18 12 56 9 49 72 74 74 98 25 68 96 10 75 22 48 43 50 9 38 13 38 82 21 37 66 21 86 83 89 0 73 84 39 77 30 66 26 25 89 14 22 71 75 51 70 41 43 12 70 4 25 20 71 62 1 47 79 66 87 87 95 74 63 97 21 83 28 52 90 90 44 34 55 67 69 90 20 62 66

output:

879050745

result:

ok 1 number(s): "879050745"

Test #13:

score: 0
Accepted
time: 8ms
memory: 3556kb

input:

1
100 49 5
41 64 55 30 13 20 100 9 12 45 33 28 25 64 81 71 19 36 83 14 72 16 99 44 95 12 23 3 18 89 49 80 15 23 59 7 16 79 13 61 67 57 60 31 94 3 86 54 80 0 99 74 47 80 64 78 23 56 64 78 55 85 75 59 61 57 53 38 72 70 61 76 7 77 52 30 41 28 1 55 9 77 33 79 56 67 92 46 6 20 29 13 88 47 5 9 83 86 75 19

output:

778551245

result:

ok 1 number(s): "778551245"

Test #14:

score: 0
Accepted
time: 112ms
memory: 3548kb

input:

1
100 73 50
62 54 10 15 91 71 92 68 12 56 77 86 56 74 77 82 71 91 57 48 24 88 41 90 40 8 50 33 96 97 74 30 77 28 52 100 90 98 75 6 53 44 26 75 84 74 94 99 45 80 42 75 10 87 75 93 59 18 24 21 31 47 46 31 70 34 76 33 10 36 51 60 95 51 99 25 25 78 14 57 100 92 72 95 25 81 0 97 94 50 80 48 8 38 77 39 97...

output:

966167597

result:

ok 1 number(s): "966167597"

Test #15:

score: 0
Accepted
time: 29ms
memory: 3480kb

input:

1
100 97 8
72 76 65 90 46 54 39 59 11 35 74 88 76 73 6 35 55 68 99 71 66 93 16 69 54 73 100 31 74 26 66 81 37 9 44 24 95 60 47 29 6 41 4 96 40 44 69 66 78 70 40 99 74 94 51 73 51 37 64 10 72 42 17 71 23 22 88 39 71 24 7 11 83 24 78 21 8 16 50 92 23 74 43 89 85 59 87 3 81 48 87 50 29 7 37 13 21 93 90...

output:

578242220

result:

ok 1 number(s): "578242220"

Test #16:

score: 0
Accepted
time: 20ms
memory: 3456kb

input:

1
100 21 50
24 66 9 30 59 72 31 84 0 36 49 78 96 72 13 45 7 23 39 36 87 75 92 36 100 13 93 61 62 68 47 32 31 48 37 95 35 89 8 86 82 61 83 39 30 49 77 78 76 49 84 67 4 34 27 20 76 0 92 21 80 71 32 22 33 9 10 67 9 24 53 74 13 98 57 50 35 33 52 59 13 23 3 37 44 5 63 20 35 89 27 19 39 31 8 87 2 91 3 44

output:

474759161

result:

ok 1 number(s): "474759161"

Test #17:

score: 0
Accepted
time: 117ms
memory: 3484kb

input:

1
100 49 99
34 100 64 15 47 22 90 75 100 47 25 79 26 3 43 99 2 68 24 70 39 79 34 82 45 10 87 80 6 98 4 15 3 64 63 87 97 40 80 30 35 47 49 17 54 19 85 79 29 60 61 90 24 30 70 67 44 63 30 43 20 66 3 95 43 98 22 62 81 91 9 57 0 3 71 46 18 83 99 72 36 48 42 20 14 18 39 38 22 87 67 21 60 0 70 95 84 0 95 40

output:

3181458

result:

ok 1 number(s): "3181458"

Test #18:

score: 0
Accepted
time: 108ms
memory: 3460kb

input:

1
100 73 46
54 89 87 57 92 73 49 33 32 59 33 36 46 2 50 8 87 56 65 60 13 50 77 28 58 40 69 10 95 39 97 66 65 34 56 46 2 70 52 54 89 67 27 60 77 90 49 90 95 6 59 59 88 70 46 14 69 82 58 55 61 17 76 67 53 86 34 57 8 22 99 8 89 45 62 75 1 21 33 6 16 30 13 47 74 98 47 56 88 49 85 56 49 60 41 69 76 66 86...

output:

353900212

result:

ok 1 number(s): "353900212"

Test #19:

score: 0
Accepted
time: 290ms
memory: 3516kb

input:

1
100 98 91
64 11 31 31 37 23 40 57 32 38 8 38 77 12 47 30 38 10 39 94 67 54 63 74 36 15 62 7 72 69 22 50 58 50 48 38 75 99 46 99 64 86 27 71 0 95 57 91 60 29 2 82 51 78 33 95 61 11 63 66 36 80 80 51 6 40 24 52 79 90 22 60 8 51 41 3 96 71 69 75 6 45 74 63 0 11 23 73 75 47 24 25 70 95 12 42 57 42 99 45

output:

991832540

result:

ok 1 number(s): "991832540"

Test #20:

score: 0
Accepted
time: 120ms
memory: 3524kb

input:

1
100 64 65
80 91 56 8 83 44 39 75 86 39 83 29 32 56 6 44 84 43 6 19 97 94 20 48 69 59 15 79 30 89 98 63 87 95 49 50 53 19 70 16 47 93 78 67 100 59 51 81 82 61 5 62 96 89 33 40 38 19 78 8 7 38 77 55 31 78 27 3 53 20 63 95 38 93 72 12 41 59 38 96 68 47 17 81 14 56 54 83 40 75 9 7 96 55 77 51 48 25 1 78

output:

267899508

result:

ok 1 number(s): "267899508"

Test #21:

score: 0
Accepted
time: 320ms
memory: 3520kb

input:

1
100 100 99
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...

output:

436278057

result:

ok 1 number(s): "436278057"

Test #22:

score: 0
Accepted
time: 3ms
memory: 3492kb

input:

1
100 1 99
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...

output:

131961966

result:

ok 1 number(s): "131961966"

Test #23:

score: 0
Accepted
time: 7ms
memory: 3524kb

input:

1
100 100 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...

output:

436278057

result:

ok 1 number(s): "436278057"

Test #24:

score: 0
Accepted
time: 1ms
memory: 3448kb

input:

1
100 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...

output:

131961966

result:

ok 1 number(s): "131961966"

Test #25:

score: 0
Accepted
time: 327ms
memory: 3524kb

input:

1
100 100 99
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100...

output:

882499717

result:

ok 1 number(s): "882499717"

Test #26:

score: 0
Accepted
time: 4ms
memory: 3556kb

input:

1
100 1 99
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 1...

output:

882499717

result:

ok 1 number(s): "882499717"

Test #27:

score: 0
Accepted
time: 6ms
memory: 3492kb

input:

1
100 100 1
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 ...

output:

882499717

result:

ok 1 number(s): "882499717"

Test #28:

score: 0
Accepted
time: 1ms
memory: 3448kb

input:

1
100 1 1
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 10...

output:

882499717

result:

ok 1 number(s): "882499717"