QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#257268 | #7754. Rolling For Days | ucup-team296# | WA | 0ms | 3628kb | C++20 | 9.3kb | 2023-11-19 01:57:51 | 2023-11-19 01:57:52 |
Judging History
answer
#include <bits/stdc++.h>
/**
* Author: Niyaz Nigmatullin
*
*/
using namespace std;
string to_string(string s) {
return '"' + s + '"';
}
string to_string(const char* s) {
return to_string((string) s);
}
string to_string(bool b) {
return (b ? "true" : "false");
}
template <typename A, typename B>
string to_string(pair<A, B> p) {
return "(" + to_string(p.first) + ", " + to_string(p.second) + ")";
}
template <typename A>
string to_string(A v) {
bool first = true;
string res = "{";
for (const auto &x : v) {
if (!first) {
res += ", ";
}
first = false;
res += to_string(x);
}
res += "}";
return res;
}
void debug_out() { cerr << endl; }
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
cerr << " " << to_string(H);
debug_out(T...);
}
#ifdef LOCAL
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
template <typename T>
T inverse(T a, T m) {
assert(a != 0);
T u = 0, v = 1;
while (a != 0) {
T t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return u;
}
template <typename T>
class Modular {
public:
using Type = typename decay<decltype(T::value)>::type;
constexpr Modular() : value() {}
template <typename U>
Modular(const U& x) {
value = normalize(x);
}
template <typename U>
static Type normalize(const U& x) {
Type v;
if (-mod() <= x && x < mod()) v = static_cast<Type>(x);
else v = static_cast<Type>(x % mod());
if (v < 0) v += mod();
return v;
}
const Type& operator()() const { return value; }
template <typename U>
explicit operator U() const { return static_cast<U>(value); }
constexpr static Type mod() { return T::value; }
Modular& operator+=(const Modular& other) { if ((value += other.value) >= mod()) value -= mod(); return *this; }
Modular& operator-=(const Modular& other) { if ((value -= other.value) < 0) value += mod(); return *this; }
template <typename U> Modular& operator+=(const U& other) { return *this += Modular(other); }
template <typename U> Modular& operator-=(const U& other) { return *this -= Modular(other); }
Modular& operator++() { return *this += 1; }
Modular& operator--() { return *this -= 1; }
Modular operator++(int) { Modular result(*this); *this += 1; return result; }
Modular operator--(int) { Modular result(*this); *this -= 1; return result; }
Modular operator-() const { return Modular(-value); }
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int>::value, Modular>::type& operator*=(const Modular& rhs) {
#ifdef _WIN32
uint64_t x = static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value);
uint32_t xh = static_cast<uint32_t>(x >> 32), xl = static_cast<uint32_t>(x), d, m;
asm(
"divl %4; \n\t"
: "=a" (d), "=d" (m)
: "d" (xh), "a" (xl), "r" (mod())
);
value = m;
#else
value = normalize(static_cast<int64_t>(value) * static_cast<int64_t>(rhs.value));
#endif
return *this;
}
template <typename U = T>
typename enable_if<is_same<typename Modular<U>::Type, int64_t>::value, Modular>::type& operator*=(const Modular& rhs) {
int64_t q = static_cast<int64_t>(static_cast<long double>(value) * rhs.value / mod());
value = normalize(value * rhs.value - q * mod());
return *this;
}
template <typename U = T>
typename enable_if<!is_integral<typename Modular<U>::Type>::value, Modular>::type& operator*=(const Modular& rhs) {
value = normalize(value * rhs.value);
return *this;
}
Modular& operator/=(const Modular& other) { return *this *= Modular(inverse(other.value, mod())); }
template <typename U>
friend bool operator==(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend bool operator<(const Modular<U>& lhs, const Modular<U>& rhs);
template <typename U>
friend std::istream& operator>>(std::istream& stream, Modular<U>& number);
private:
Type value;
};
template <typename T> bool operator==(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value == rhs.value; }
template <typename T, typename U> bool operator==(const Modular<T>& lhs, U rhs) { return lhs == Modular<T>(rhs); }
template <typename T, typename U> bool operator==(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) == rhs; }
template <typename T> bool operator!=(const Modular<T>& lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(const Modular<T>& lhs, U rhs) { return !(lhs == rhs); }
template <typename T, typename U> bool operator!=(U lhs, const Modular<T>& rhs) { return !(lhs == rhs); }
template <typename T> bool operator<(const Modular<T>& lhs, const Modular<T>& rhs) { return lhs.value < rhs.value; }
template <typename T> Modular<T> operator+(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) += rhs; }
template <typename T, typename U> Modular<T> operator+(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) += rhs; }
template <typename T> Modular<T> operator-(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T, typename U> Modular<T> operator-(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) -= rhs; }
template <typename T> Modular<T> operator*(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T, typename U> Modular<T> operator*(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) *= rhs; }
template <typename T> Modular<T> operator/(const Modular<T>& lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(const Modular<T>& lhs, U rhs) { return Modular<T>(lhs) /= rhs; }
template <typename T, typename U> Modular<T> operator/(U lhs, const Modular<T>& rhs) { return Modular<T>(lhs) /= rhs; }
template<typename T, typename U>
Modular<T> power(const Modular<T>& a, const U& b) {
assert(b >= 0);
Modular<T> x = a, res = 1;
U p = b;
while (p > 0) {
if (p & 1) res *= x;
x *= x;
p >>= 1;
}
return res;
}
template <typename T>
string to_string(const Modular<T>& number) {
return to_string(number());
}
template <typename T>
std::ostream& operator<<(std::ostream& stream, const Modular<T>& number) {
return stream << number();
}
template <typename T>
std::istream& operator>>(std::istream& stream, Modular<T>& number) {
typename common_type<typename Modular<T>::Type, int64_t>::type x;
stream >> x;
number.value = Modular<T>::normalize(x);
return stream;
}
/*
using ModType = int;
struct VarMod { static ModType value; };
ModType VarMod::value;
ModType& md = VarMod::value;
using Mint = Modular<VarMod>;
*/
constexpr int md = 998244353;
using Mint = Modular<std::integral_constant<decay<decltype(md)>::type, md>>;
Mint solve(int n, vector<int> const &a, vector<int> const &b) {
int m = (int) a.size();
vector<vector<Mint>> f(1 << m, vector<Mint>(n + 1));
f[0][0] = 1;
vector<vector<Mint>> c(n + 1, vector<Mint>(n + 1));
for (int i = 0; i <= n; i++) {
c[i][0] = 1;
for (int j = 1; j <= i; j++) {
c[i][j] = c[i - 1][j - 1] + c[i - 1][j];
}
}
for (int mask = 1; mask < (1 << m); mask++) {
int any = 0;
while (((mask >> any) & 1) == 0) ++any;
// f[mask & ~(1 << any)], any
int without = mask & ~(1 << any);
for (int was = 0; was <= n; was++) {
Mint value = f[without][was];
if (value == 0) continue;
for (int get = 0; get + was <= n && get < b[any]; get++) {
f[mask][get + was] += value * c[get + was][get];
}
}
}
int targetSum = 0;
for (int x: b) targetSum += x;
vector<int> sumB(1 << m);
vector<int> sumA(1 << m);
for (int mask = 0; mask < 1 << m; mask++) {
for (int i = 0; i < m; i++) {
if ((mask >> i) & 1) {
sumB[mask] += b[i];
sumA[mask] += a[i];
}
}
}
vector<vector<Mint>> g(1 << m, vector<Mint>(targetSum + 1));
g[(1 << m) - 1][targetSum] = 0;
for (int mask = (1 << m) - 2; mask >= 0; mask--) {
for (int k = targetSum - 1; k >= sumB[mask]; k--) {
Mint sumAddBit = 0;
int left = k - sumB[mask];
Mint good = Mint(n) - Mint(sumA[mask]) - Mint(left);
Mint bad = sumA[mask] - sumB[mask];
// debug(good);
Mint expected = (good + bad) / good;
for (int i = 0; i < m; i++) {
if (((mask >> i) & 1) == 1) continue;
if (left < b[i] - 1) continue;
Mint allWays = f[((1 << m) - 1) ^ mask][left];
if (allWays == 0) continue;
Mint goodWays = f[((1 << m) - 1) ^ mask ^ (1 << i)][left - (b[i] - 1)] * c[left][b[i] - 1];
// debug(good);
Mint prob = goodWays / allWays * (a[i] - (b[i] - 1)) / good;
sumAddBit += prob;
g[mask][k] += (g[mask | (1 << i)][k + 1] + expected) * prob;
}
Mint probStay = 1 - sumAddBit;
g[mask][k] += (g[mask][k + 1] + expected) * probStay;
}
}
return g[0][0];
}
int main() {
std::cin.tie(NULL); std::ios::sync_with_stdio(false);
int n, m;
cin >> n >> m;
vector<int> a(m);
for (int &x: a) cin >> x;
vector<int> b(m);
for (int &x: b) cin >> x;
Mint ans = solve(n, a, b);
cout << ans << '\n';
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3536kb
input:
2 2 1 1 1 1
output:
2
result:
ok answer is '2'
Test #2:
score: 0
Accepted
time: 0ms
memory: 3628kb
input:
4 2 2 2 2 1
output:
582309210
result:
ok answer is '582309210'
Test #3:
score: -100
Wrong Answer
time: 0ms
memory: 3604kb
input:
5 5 1 1 1 1 1 0 0 0 0 1
output:
1
result:
wrong answer expected '5', found '1'