QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#242638 | #7632. Balanced Arrays | hos_lyric | AC ✓ | 26ms | 27392kb | C++14 | 11.2kb | 2023-11-07 15:55:29 | 2023-11-07 15:55:29 |
Judging History
answer
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using Int = long long;
template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }
#define COLOR(s) ("\x1b[" s "m")
////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
static constexpr unsigned M = M_;
unsigned x;
constexpr ModInt() : x(0U) {}
constexpr ModInt(unsigned x_) : x(x_ % M) {}
constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
ModInt pow(long long e) const {
if (e < 0) return inv().pow(-e);
ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
}
ModInt inv() const {
unsigned a = M, b = x; int y = 0, z = 1;
for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
assert(a == 1U); return ModInt(y);
}
ModInt operator+() const { return *this; }
ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
explicit operator bool() const { return x; }
bool operator==(const ModInt &a) const { return (x == a.x); }
bool operator!=(const ModInt &a) const { return (x != a.x); }
friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
constexpr unsigned MO = 998244353U;
constexpr unsigned MO2 = 2U * MO;
constexpr int FFT_MAX = 23;
using Mint = ModInt<MO>;
constexpr Mint FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 911660635U, 372528824U, 929031873U, 452798380U, 922799308U, 781712469U, 476477967U, 166035806U, 258648936U, 584193783U, 63912897U, 350007156U, 666702199U, 968855178U, 629671588U, 24514907U, 996173970U, 363395222U, 565042129U, 733596141U, 267099868U, 15311432U};
constexpr Mint INV_FFT_ROOTS[FFT_MAX + 1] = {1U, 998244352U, 86583718U, 509520358U, 337190230U, 87557064U, 609441965U, 135236158U, 304459705U, 685443576U, 381598368U, 335559352U, 129292727U, 358024708U, 814576206U, 708402881U, 283043518U, 3707709U, 121392023U, 704923114U, 950391366U, 428961804U, 382752275U, 469870224U};
constexpr Mint FFT_RATIOS[FFT_MAX] = {911660635U, 509520358U, 369330050U, 332049552U, 983190778U, 123842337U, 238493703U, 975955924U, 603855026U, 856644456U, 131300601U, 842657263U, 730768835U, 942482514U, 806263778U, 151565301U, 510815449U, 503497456U, 743006876U, 741047443U, 56250497U, 867605899U};
constexpr Mint INV_FFT_RATIOS[FFT_MAX] = {86583718U, 372528824U, 373294451U, 645684063U, 112220581U, 692852209U, 155456985U, 797128860U, 90816748U, 860285882U, 927414960U, 354738543U, 109331171U, 293255632U, 535113200U, 308540755U, 121186627U, 608385704U, 438932459U, 359477183U, 824071951U, 103369235U};
// as[rev(i)] <- \sum_j \zeta^(ij) as[j]
void fft(Mint *as, int n) {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
int m = n;
if (m >>= 1) {
for (int i = 0; i < m; ++i) {
const unsigned x = as[i + m].x; // < MO
as[i + m].x = as[i].x + MO - x; // < 2 MO
as[i].x += x; // < 2 MO
}
}
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i + m].x = as[i].x + MO - x; // < 3 MO
as[i].x += x; // < 3 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
for (; m; ) {
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i + m].x = as[i].x + MO - x; // < 4 MO
as[i].x += x; // < 4 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m >>= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned x = (prod * as[i + m]).x; // < MO
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i + m].x = as[i].x + MO - x; // < 3 MO
as[i].x += x; // < 3 MO
}
prod *= FFT_RATIOS[__builtin_ctz(++h)];
}
}
}
for (int i = 0; i < n; ++i) {
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i].x = (as[i].x >= MO) ? (as[i].x - MO) : as[i].x; // < MO
}
}
// as[i] <- (1/n) \sum_j \zeta^(-ij) as[rev(j)]
void invFft(Mint *as, int n) {
assert(!(n & (n - 1))); assert(1 <= n); assert(n <= 1 << FFT_MAX);
int m = 1;
if (m < n >> 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + m; ++i) {
const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO
as[i].x += as[i + m].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
m <<= 1;
}
for (; m < n >> 1; m <<= 1) {
Mint prod = 1U;
for (int h = 0, i0 = 0; i0 < n; i0 += (m << 1)) {
for (int i = i0; i < i0 + (m >> 1); ++i) {
const unsigned long long y = as[i].x + MO2 - as[i + m].x; // < 4 MO
as[i].x += as[i + m].x; // < 4 MO
as[i].x = (as[i].x >= MO2) ? (as[i].x - MO2) : as[i].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
for (int i = i0 + (m >> 1); i < i0 + m; ++i) {
const unsigned long long y = as[i].x + MO - as[i + m].x; // < 2 MO
as[i].x += as[i + m].x; // < 2 MO
as[i + m].x = (prod.x * y) % MO; // < MO
}
prod *= INV_FFT_RATIOS[__builtin_ctz(++h)];
}
}
if (m < n) {
for (int i = 0; i < m; ++i) {
const unsigned y = as[i].x + MO2 - as[i + m].x; // < 4 MO
as[i].x += as[i + m].x; // < 4 MO
as[i + m].x = y; // < 4 MO
}
}
const Mint invN = Mint(n).inv();
for (int i = 0; i < n; ++i) {
as[i] *= invN;
}
}
void fft(vector<Mint> &as) {
fft(as.data(), as.size());
}
void invFft(vector<Mint> &as) {
invFft(as.data(), as.size());
}
vector<Mint> convolve(vector<Mint> as, vector<Mint> bs) {
if (as.empty() || bs.empty()) return {};
const int len = as.size() + bs.size() - 1;
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
bs.resize(n); fft(bs);
for (int i = 0; i < n; ++i) as[i] *= bs[i];
invFft(as);
as.resize(len);
return as;
}
vector<Mint> square(vector<Mint> as) {
if (as.empty()) return {};
const int len = as.size() + as.size() - 1;
int n = 1;
for (; n < len; n <<= 1) {}
as.resize(n); fft(as);
for (int i = 0; i < n; ++i) as[i] *= as[i];
invFft(as);
as.resize(len);
return as;
}
////////////////////////////////////////////////////////////////////////////////
constexpr int LIM_INV = 2'000'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];
void prepare() {
inv[1] = 1;
for (int i = 2; i < LIM_INV; ++i) {
inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
}
fac[0] = invFac[0] = 1;
for (int i = 1; i < LIM_INV; ++i) {
fac[i] = fac[i - 1] * i;
invFac[i] = invFac[i - 1] * inv[i];
}
}
Mint binom(Int n, Int k) {
if (n < 0) {
if (k >= 0) {
return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
} else if (n - k >= 0) {
return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
} else {
return 0;
}
} else {
if (0 <= k && k <= n) {
assert(n < LIM_INV);
return fac[n] * invFac[k] * invFac[n - k];
} else {
return 0;
}
}
}
/*
(a[1], ..., a[N])
b[i] := a[i+1] - a[i]
condition:
b[1] + ... + b[N-1] = 0
a[N] >= \sum[b[i]=+x] x
a[1] >= \sum[b[i]=-y] y
a[1] + (b[1] + ... + b[i-1]) <= M
a[0] := a[N+1] := M
b[0] + ... + b[N] = 0
M >= \sum[b[i]=+x] x
M >= \sum[b[i]=-y] y
b[0] + ... + b[i-1] <= 0
(0, 0) -> (m, m), above diagonal
(N+1) steps of (0, 0) or (x, 0) or (0, y)
~~>
extend last step
(0, 0) -> (m+1, m), above diagonal
cyclic shift
\sum[0<=m<=M] (1/(N+1)) [x^(m+1) y^m] (1 + x/(1-x) + y/(1-y))^(N+1)
= (1/(N+1)) [x^(M+1) y^M] (1/(1-xy)) ((1-xy) / (1-x)(1-y))^(N+1)
= (1/(N+1)) [x^(M+1) y^M] (1-xy)^N / (1-x)^(N+1)(1-y)^(N+1)
*/
Mint solve(int N, int M) {
Mint ans = 0;
for (int i = 0; i <= N && i <= M; ++i) {
ans += binom(N, i) * ((i&1)?-1:+1) * binom((M+1) - i + N, N) * binom(M - i + N, N);
}
ans *= inv[N+1];
return ans;
}
int main() {
prepare();
int N, M;
for(N=0;N<=4;++N){for(M=0;M<=4;++M)cerr<<solve(N,M)<<" ";cerr<<endl;}
for (; ~scanf("%d%d", &N, &M); ) {
const Mint ans = solve(N, M);
printf("%u\n", ans.x);
}
return 0;
}
/*
1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 7 23 54 105
1 11 51 156 375
*/
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 16ms
memory: 27196kb
input:
2 2
output:
9
result:
ok 1 number(s): "9"
Test #2:
score: 0
Accepted
time: 22ms
memory: 27308kb
input:
500000 500000
output:
984531374
result:
ok 1 number(s): "984531374"
Test #3:
score: 0
Accepted
time: 14ms
memory: 27200kb
input:
500000 1
output:
219705876
result:
ok 1 number(s): "219705876"
Test #4:
score: 0
Accepted
time: 18ms
memory: 27308kb
input:
1 500000
output:
500001
result:
ok 1 number(s): "500001"
Test #5:
score: 0
Accepted
time: 15ms
memory: 27328kb
input:
500000 353535
output:
33730077
result:
ok 1 number(s): "33730077"
Test #6:
score: 0
Accepted
time: 20ms
memory: 27332kb
input:
353535 500000
output:
182445298
result:
ok 1 number(s): "182445298"
Test #7:
score: 0
Accepted
time: 21ms
memory: 27196kb
input:
499999 499999
output:
933220940
result:
ok 1 number(s): "933220940"
Test #8:
score: 0
Accepted
time: 21ms
memory: 27312kb
input:
499999 499998
output:
899786345
result:
ok 1 number(s): "899786345"
Test #9:
score: 0
Accepted
time: 21ms
memory: 27392kb
input:
377773 400009
output:
206748715
result:
ok 1 number(s): "206748715"
Test #10:
score: 0
Accepted
time: 17ms
memory: 27320kb
input:
499999 100001
output:
482775773
result:
ok 1 number(s): "482775773"
Test #11:
score: 0
Accepted
time: 21ms
memory: 27304kb
input:
444445 488884
output:
70939759
result:
ok 1 number(s): "70939759"
Test #12:
score: 0
Accepted
time: 20ms
memory: 27392kb
input:
488885 444449
output:
591315327
result:
ok 1 number(s): "591315327"
Test #13:
score: 0
Accepted
time: 19ms
memory: 27320kb
input:
500000 111
output:
313439156
result:
ok 1 number(s): "313439156"
Test #14:
score: 0
Accepted
time: 25ms
memory: 27308kb
input:
333333 444444
output:
403492103
result:
ok 1 number(s): "403492103"
Test #15:
score: 0
Accepted
time: 24ms
memory: 27308kb
input:
499994 343433
output:
334451699
result:
ok 1 number(s): "334451699"
Test #16:
score: 0
Accepted
time: 26ms
memory: 27388kb
input:
477774 411113
output:
63883341
result:
ok 1 number(s): "63883341"
Test #17:
score: 0
Accepted
time: 13ms
memory: 27308kb
input:
123456 432109
output:
238795570
result:
ok 1 number(s): "238795570"
Test #18:
score: 0
Accepted
time: 18ms
memory: 27320kb
input:
131331 467777
output:
834790039
result:
ok 1 number(s): "834790039"
Test #19:
score: 0
Accepted
time: 15ms
memory: 27200kb
input:
500000 2
output:
304727284
result:
ok 1 number(s): "304727284"
Test #20:
score: 0
Accepted
time: 15ms
memory: 27196kb
input:
1111 111
output:
98321603
result:
ok 1 number(s): "98321603"
Test #21:
score: 0
Accepted
time: 20ms
memory: 27312kb
input:
416084 493105
output:
916827025
result:
ok 1 number(s): "916827025"
Test #22:
score: 0
Accepted
time: 14ms
memory: 27332kb
input:
53888 138663
output:
57263952
result:
ok 1 number(s): "57263952"
Test #23:
score: 0
Accepted
time: 14ms
memory: 27316kb
input:
219161 382743
output:
304889787
result:
ok 1 number(s): "304889787"
Test #24:
score: 0
Accepted
time: 13ms
memory: 27320kb
input:
181392 318090
output:
12528742
result:
ok 1 number(s): "12528742"
Test #25:
score: 0
Accepted
time: 20ms
memory: 27236kb
input:
135930 422947
output:
554153000
result:
ok 1 number(s): "554153000"
Test #26:
score: 0
Accepted
time: 13ms
memory: 27312kb
input:
280507 210276
output:
812816587
result:
ok 1 number(s): "812816587"
Test #27:
score: 0
Accepted
time: 23ms
memory: 27236kb
input:
253119 420465
output:
124024302
result:
ok 1 number(s): "124024302"
Test #28:
score: 0
Accepted
time: 20ms
memory: 27392kb
input:
446636 97448
output:
150388382
result:
ok 1 number(s): "150388382"
Test #29:
score: 0
Accepted
time: 20ms
memory: 27308kb
input:
284890 126665
output:
786559507
result:
ok 1 number(s): "786559507"
Test #30:
score: 0
Accepted
time: 15ms
memory: 27248kb
input:
186708 28279
output:
607509026
result:
ok 1 number(s): "607509026"
Extra Test:
score: 0
Extra Test Passed