QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#120215#6417. Classical Summation Problemhos_lyricAC ✓80ms30648kbC++145.2kb2023-07-06 15:01:252023-07-06 15:03:44

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-07-06 15:03:44]
  • 评测
  • 测评结果:AC
  • 用时:80ms
  • 内存:30648kb
  • [2023-07-06 15:01:25]
  • 提交

answer

#include <cassert>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <bitset>
#include <complex>
#include <deque>
#include <functional>
#include <iostream>
#include <limits>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

using namespace std;

using Int = long long;

template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; };
template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; }
template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; }
template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; }
template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; }

////////////////////////////////////////////////////////////////////////////////
template <unsigned M_> struct ModInt {
  static constexpr unsigned M = M_;
  unsigned x;
  constexpr ModInt() : x(0U) {}
  constexpr ModInt(unsigned x_) : x(x_ % M) {}
  constexpr ModInt(unsigned long long x_) : x(x_ % M) {}
  constexpr ModInt(int x_) : x(((x_ %= static_cast<int>(M)) < 0) ? (x_ + static_cast<int>(M)) : x_) {}
  constexpr ModInt(long long x_) : x(((x_ %= static_cast<long long>(M)) < 0) ? (x_ + static_cast<long long>(M)) : x_) {}
  ModInt &operator+=(const ModInt &a) { x = ((x += a.x) >= M) ? (x - M) : x; return *this; }
  ModInt &operator-=(const ModInt &a) { x = ((x -= a.x) >= M) ? (x + M) : x; return *this; }
  ModInt &operator*=(const ModInt &a) { x = (static_cast<unsigned long long>(x) * a.x) % M; return *this; }
  ModInt &operator/=(const ModInt &a) { return (*this *= a.inv()); }
  ModInt pow(long long e) const {
    if (e < 0) return inv().pow(-e);
    ModInt a = *this, b = 1U; for (; e; e >>= 1) { if (e & 1) b *= a; a *= a; } return b;
  }
  ModInt inv() const {
    unsigned a = M, b = x; int y = 0, z = 1;
    for (; b; ) { const unsigned q = a / b; const unsigned c = a - q * b; a = b; b = c; const int w = y - static_cast<int>(q) * z; y = z; z = w; }
    assert(a == 1U); return ModInt(y);
  }
  ModInt operator+() const { return *this; }
  ModInt operator-() const { ModInt a; a.x = x ? (M - x) : 0U; return a; }
  ModInt operator+(const ModInt &a) const { return (ModInt(*this) += a); }
  ModInt operator-(const ModInt &a) const { return (ModInt(*this) -= a); }
  ModInt operator*(const ModInt &a) const { return (ModInt(*this) *= a); }
  ModInt operator/(const ModInt &a) const { return (ModInt(*this) /= a); }
  template <class T> friend ModInt operator+(T a, const ModInt &b) { return (ModInt(a) += b); }
  template <class T> friend ModInt operator-(T a, const ModInt &b) { return (ModInt(a) -= b); }
  template <class T> friend ModInt operator*(T a, const ModInt &b) { return (ModInt(a) *= b); }
  template <class T> friend ModInt operator/(T a, const ModInt &b) { return (ModInt(a) /= b); }
  explicit operator bool() const { return x; }
  bool operator==(const ModInt &a) const { return (x == a.x); }
  bool operator!=(const ModInt &a) const { return (x != a.x); }
  friend std::ostream &operator<<(std::ostream &os, const ModInt &a) { return os << a.x; }
};
////////////////////////////////////////////////////////////////////////////////

constexpr unsigned MO = 998244353;
using Mint = ModInt<MO>;

constexpr int LIM_INV = 2'000'010;
Mint inv[LIM_INV], fac[LIM_INV], invFac[LIM_INV];

void prepare() {
  inv[1] = 1;
  for (int i = 2; i < LIM_INV; ++i) {
    inv[i] = -((Mint::M / i) * inv[Mint::M % i]);
  }
  fac[0] = invFac[0] = 1;
  for (int i = 1; i < LIM_INV; ++i) {
    fac[i] = fac[i - 1] * i;
    invFac[i] = invFac[i - 1] * inv[i];
  }
}
Mint binom(Int n, Int k) {
  if (n < 0) {
    if (k >= 0) {
      return ((k & 1) ? -1 : +1) * binom(-n + k - 1, k);
    } else if (n - k >= 0) {
      return (((n - k) & 1) ? -1 : +1) * binom(-k - 1, n - k);
    } else {
      return 0;
    }
  } else {
    if (0 <= k && k <= n) {
      assert(n < LIM_INV);
      return fac[n] * invFac[k] * invFac[n - k];
    } else {
      return 0;
    }
  }
}


int main() {
  prepare();
  
  int N, K;
  for (; ~scanf("%d%d", &N, &K); ) {
    Mint ans = Mint(N).pow(K) * Mint(1 + N) / 2;
    if (K % 2 == 0) {
      vector<Mint> pw(N + 1, 0);
      for (int i = 0; i <= N; ++i) {
        pw[i] = Mint(i).pow(K/2);
      }
      Mint fix = 0;
      Mint f0 = 0, f1 = 0;
      for (int x = 1; x <= N; ++x) {
        {
          const Mint r = pw[N - x + 1] - pw[N - x];
          fix += f0 * r * x;
          fix -= f1 * r;
        }
        {
          const Mint l = pw[x] - pw[x - 1];
          f0 += l;
          f1 += l * x;
        }
      }
      fix /= 2;
      fix *= binom(K, K/2);
      ans -= fix;
    }
    printf("%u\n", ans.x);
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 17ms
memory: 27068kb

input:

3 2

output:

14

result:

ok 1 number(s): "14"

Test #2:

score: 0
Accepted
time: 21ms
memory: 27016kb

input:

5 3

output:

375

result:

ok 1 number(s): "375"

Test #3:

score: 0
Accepted
time: 12ms
memory: 27052kb

input:

2 2

output:

5

result:

ok 1 number(s): "5"

Test #4:

score: 0
Accepted
time: 17ms
memory: 27240kb

input:

10 9

output:

508778235

result:

ok 1 number(s): "508778235"

Test #5:

score: 0
Accepted
time: 16ms
memory: 27072kb

input:

69 3

output:

11497815

result:

ok 1 number(s): "11497815"

Test #6:

score: 0
Accepted
time: 21ms
memory: 27012kb

input:

994 515

output:

33689623

result:

ok 1 number(s): "33689623"

Test #7:

score: 0
Accepted
time: 12ms
memory: 27068kb

input:

4476 6182

output:

114894183

result:

ok 1 number(s): "114894183"

Test #8:

score: 0
Accepted
time: 20ms
memory: 27032kb

input:

58957 12755

output:

932388891

result:

ok 1 number(s): "932388891"

Test #9:

score: 0
Accepted
time: 30ms
memory: 27364kb

input:

218138 28238

output:

392861201

result:

ok 1 number(s): "392861201"

Test #10:

score: 0
Accepted
time: 51ms
memory: 28928kb

input:

644125 316810

output:

420621854

result:

ok 1 number(s): "420621854"

Test #11:

score: 0
Accepted
time: 53ms
memory: 28928kb

input:

612914 505428

output:

973686286

result:

ok 1 number(s): "973686286"

Test #12:

score: 0
Accepted
time: 13ms
memory: 27056kb

input:

998216 938963

output:

251335926

result:

ok 1 number(s): "251335926"

Test #13:

score: 0
Accepted
time: 16ms
memory: 27012kb

input:

990516 996933

output:

549551960

result:

ok 1 number(s): "549551960"

Test #14:

score: 0
Accepted
time: 77ms
memory: 30576kb

input:

999019 999012

output:

637189128

result:

ok 1 number(s): "637189128"

Test #15:

score: 0
Accepted
time: 69ms
memory: 30428kb

input:

999928 999950

output:

185229465

result:

ok 1 number(s): "185229465"

Test #16:

score: 0
Accepted
time: 8ms
memory: 27236kb

input:

999999 999999

output:

384164916

result:

ok 1 number(s): "384164916"

Test #17:

score: 0
Accepted
time: 71ms
memory: 30620kb

input:

999999 1000000

output:

696165930

result:

ok 1 number(s): "696165930"

Test #18:

score: 0
Accepted
time: 17ms
memory: 27020kb

input:

1000000 999999

output:

219071706

result:

ok 1 number(s): "219071706"

Test #19:

score: 0
Accepted
time: 70ms
memory: 30572kb

input:

1000000 1000000

output:

128206597

result:

ok 1 number(s): "128206597"

Test #20:

score: 0
Accepted
time: 17ms
memory: 27052kb

input:

2 10

output:

1410

result:

ok 1 number(s): "1410"

Test #21:

score: 0
Accepted
time: 16ms
memory: 27256kb

input:

84 16

output:

297627153

result:

ok 1 number(s): "297627153"

Test #22:

score: 0
Accepted
time: 10ms
memory: 27252kb

input:

643 800

output:

489237163

result:

ok 1 number(s): "489237163"

Test #23:

score: 0
Accepted
time: 17ms
memory: 27052kb

input:

9903 880

output:

595167333

result:

ok 1 number(s): "595167333"

Test #24:

score: 0
Accepted
time: 14ms
memory: 27012kb

input:

97446 89750

output:

410205549

result:

ok 1 number(s): "410205549"

Test #25:

score: 0
Accepted
time: 28ms
memory: 27220kb

input:

186460 646474

output:

32638530

result:

ok 1 number(s): "32638530"

Test #26:

score: 0
Accepted
time: 41ms
memory: 28456kb

input:

508940 244684

output:

598321755

result:

ok 1 number(s): "598321755"

Test #27:

score: 0
Accepted
time: 47ms
memory: 28700kb

input:

583646 557758

output:

858695621

result:

ok 1 number(s): "858695621"

Test #28:

score: 0
Accepted
time: 70ms
memory: 30096kb

input:

969610 992608

output:

256683498

result:

ok 1 number(s): "256683498"

Test #29:

score: 0
Accepted
time: 70ms
memory: 30624kb

input:

995106 996434

output:

411791999

result:

ok 1 number(s): "411791999"

Test #30:

score: 0
Accepted
time: 72ms
memory: 30584kb

input:

999961 999872

output:

61222370

result:

ok 1 number(s): "61222370"

Test #31:

score: 0
Accepted
time: 73ms
memory: 30396kb

input:

999977 999908

output:

831096762

result:

ok 1 number(s): "831096762"

Test #32:

score: 0
Accepted
time: 80ms
memory: 30648kb

input:

999992 999998

output:

562977678

result:

ok 1 number(s): "562977678"

Test #33:

score: 0
Accepted
time: 28ms
memory: 30428kb

input:

1000000 2

output:

118436113

result:

ok 1 number(s): "118436113"

Test #34:

score: 0
Accepted
time: 16ms
memory: 27016kb

input:

2 1000000

output:

298823641

result:

ok 1 number(s): "298823641"