QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#116381 | #5667. Meeting Places | cjj490168650 | AC ✓ | 363ms | 285120kb | C++20 | 17.8kb | 2023-06-28 16:59:08 | 2023-06-28 16:59:09 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
using point_t=long double; //全局数据类型,可修改为 long long 等
constexpr point_t eps=1e-8;
constexpr long double PI=3.1415926535897932384l;
// 点与向量
template<typename T> struct point
{
T x,y;
bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
bool operator>(const point &a) const {return !(*this<a || *this==a);}
point operator+(const point &a) const {return {x+a.x,y+a.y};}
point operator-(const point &a) const {return {x-a.x,y-a.y};}
point operator-() const {return {-x,-y};}
point operator*(const T k) const {return {k*x,k*y};}
point operator/(const T k) const {return {x/k,y/k};}
T operator*(const point &a) const {return x*a.x+y*a.y;} // 点积
T operator^(const point &a) const {return x*a.y-y*a.x;} // 叉积,注意优先级
int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);} // to-left 测试
T len2() const {return (*this)*(*this);} // 向量长度的平方
T dis2(const point &a) const {return (a-(*this)).len2();} // 两点距离的平方
// 涉及浮点数
long double len() const {return sqrtl(len2());} // 向量长度
long double dis(const point &a) const {return sqrtl(dis2(a));} // 两点距离
long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));} // 向量夹角
point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};} // 逆时针旋转(给定角度)
point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};} // 逆时针旋转(给定角度的正弦与余弦)
};
using Point=point<point_t>;
// 极角排序
struct argcmp
{
bool operator()(const Point &a,const Point &b) const
{
const auto quad=[](const Point &a)
{
if (a.y<-eps) return 1;
if (a.y>eps) return 4;
if (a.x<-eps) return 5;
if (a.x>eps) return 3;
return 2;
};
const int qa=quad(a),qb=quad(b);
if (qa!=qb) return qa<qb;
const auto t=a^b;
// if (abs(t)<=eps) return a*a<b*b-eps; // 不同长度的向量需要分开
return t>eps;
}
};
// 直线
template<typename T> struct line
{
point<T> p,v; // p 为直线上一点,v 为方向向量
bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;}
int toleft(const point<T> &a) const {return v.toleft(a-p);} // to-left 测试
bool operator<(const line &a) const // 半平面交算法定义的排序
{
if (abs(v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1;
return argcmp()(v,a.v);
}
// 涉及浮点数
point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));} // 直线交点
long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();} // 点到直线距离
point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));} // 点在直线上的投影
};
using Line=line<point_t>;
//线段
template<typename T> struct segment
{
point<T> a,b;
bool operator<(const segment &s) const {return make_pair(a,b)<make_pair(s.a,s.b);}
// 判定性函数建议在整数域使用
// 判断点是否在线段上
// -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
int is_on(const point<T> &p) const
{
if (p==a || p==b) return -1;
return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps;
}
// 判断线段直线是否相交
// -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
int is_inter(const line<T> &l) const
{
if (l.toleft(a)==0 || l.toleft(b)==0) return -1;
return l.toleft(a)!=l.toleft(b);
}
// 判断两线段是否相交
// -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
int is_inter(const segment<T> &s) const
{
if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1;
const line<T> l{a,b-a},ls{s.a,s.b-s.a};
return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1;
}
// 点到线段距离
long double dis(const point<T> &p) const
{
if ((p-a)*(b-a)<-eps || (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
const line<T> l{a,b-a};
return l.dis(p);
}
// 两线段间距离
long double dis(const segment<T> &s) const
{
if (is_inter(s)) return 0;
return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
}
};
using Segment=segment<point_t>;
// 多边形
template<typename T> struct polygon
{
vector<point<T>> p; // 以逆时针顺序存储
size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;}
size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;}
// 回转数
// 返回值第一项表示点是否在多边形边上
// 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
pair<bool,int> winding(const point<T> &a) const
{
int cnt=0;
for (size_t i=0;i<p.size();i++)
{
const point<T> u=p[i],v=p[nxt(i)];
if (abs((a-u)^(a-v))<=eps && (a-u)*(a-v)<=eps) return {true,0};
if (abs(u.y-v.y)<=eps) continue;
const Line uv={u,v-u};
if (u.y<v.y-eps && uv.toleft(a)<=0) continue;
if (u.y>v.y+eps && uv.toleft(a)>=0) continue;
if (u.y<a.y-eps && v.y>=a.y-eps) cnt++;
if (u.y>=a.y-eps && v.y<a.y-eps) cnt--;
}
return {false,cnt};
}
// 多边形面积的两倍
// 可用于判断点的存储顺序是顺时针或逆时针
T area() const
{
T sum=0;
for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];
return sum;
}
// 多边形的周长
long double circ() const
{
long double sum=0;
for (size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]);
return sum;
}
};
using Polygon=polygon<point_t>;
//凸多边形
template<typename T> struct convex: polygon<T>
{
// 闵可夫斯基和
convex operator+(const convex &c) const
{
const auto &p=this->p;
vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
vector<point<T>> res; res.reserve(p.size()+c.p.size());
const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);};
for (size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]};
for (size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]};
rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
const auto check=[](const vector<point<T>> &res,const point<T> &u)
{
const auto back1=res.back(),back2=*prev(res.end(),2);
return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
};
auto u=e1[0].a+e2[0].a;
for (const auto &v:edge)
{
while (res.size()>1 && check(res,u)) res.pop_back();
res.push_back(u);
u=u+v.b-v.a;
}
if (res.size()>1 && check(res,res[0])) res.pop_back();
return {res};
}
// 旋转卡壳
// func 为更新答案的函数,可以根据题目调整位置
template<typename F> void rotcaliper(const F &func) const
{
const auto &p=this->p;
const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-u)^(w-v);};
for (size_t i=0,j=1;i<p.size();i++)
{
const auto nxti=this->nxt(i);
func(p[i],p[nxti],p[j]);
while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti]))
{
j=this->nxt(j);
func(p[i],p[nxti],p[j]);
}
}
}
// 凸多边形的直径的平方
T diameter2() const
{
const auto &p=this->p;
if (p.size()==1) return 0;
if (p.size()==2) return p[0].dis2(p[1]);
T ans=0;
auto func=[&](const point<T> &u,const point<T> &v,const point<T> &w){ans=max({ans,w.dis2(u),w.dis2(v)});};
rotcaliper(func);
return ans;
}
// 判断点是否在凸多边形内
// 复杂度 O(logn)
// -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
int is_in(const point<T> &a) const
{
const auto &p=this->p;
if (p.size()==1) return a==p[0]?-1:0;
if (p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0;
if (a==p[0]) return -1;
if ((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1) return 0;
const auto cmp=[&](const Point &u,const Point &v){return (u-p[0]).toleft(v-p[0])==1;};
const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
if (i==p.size()-1 && segment<T>{p[0],p[i]}.is_on(a)) return -1;
if (segment<T>{p[i-1],p[i]}.is_on(a)) return -1;
return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
}
// 凸多边形关于某一方向的极点
// 复杂度 O(logn)
// 参考资料:https://codeforces.com/blog/entry/48868
template<typename F> size_t extreme(const F &dir) const
{
const auto &p=this->p;
const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;};
const auto dir0=dir(p[0]); const auto check0=check(0);
if (!check0 && check(p.size()-1)) return 0;
const auto cmp=[&](const Point &v)
{
const size_t vi=&v-p.data();
if (vi==0) return 1;
const auto checkv=check(vi);
const auto t=dir0.toleft(v-p[0]);
if (vi==1 && checkv==check0 && t==0) return 1;
return checkv^(checkv==check0 && t<=0);
};
return partition_point(p.begin(),p.end(),cmp)-p.begin();
}
// 过凸多边形外一点求凸多边形的切线,返回切点下标
// 复杂度 O(logn)
// 必须保证点在多边形外
pair<size_t,size_t> tangent(const point<T> &a) const
{
const size_t i=extreme([&](const point<T> &u){return u-a;});
const size_t j=extreme([&](const point<T> &u){return a-u;});
return {i,j};
}
// 求平行于给定直线的凸多边形的切线,返回切点下标
// 复杂度 O(logn)
pair<size_t,size_t> tangent(const line<T> &a) const
{
const size_t i=extreme([&](...){return a.v;});
const size_t j=extreme([&](...){return -a.v;});
return {i,j};
}
};
using Convex=convex<point_t>;
// 圆
struct Circle
{
Point c;
long double r;
bool operator==(const Circle &a) const {return c==a.c && abs(r-a.r)<=eps;}
long double circ() const {return 2*PI*r;} // 周长
long double area() const {return PI*r*r;} // 面积
// 点与圆的关系
// -1 圆上 | 0 圆外 | 1 圆内
int is_in(const Point &p) const {const long double d=p.dis(c); return abs(d-r)<=eps?-1:d<r-eps;}
// 直线与圆关系
// 0 相离 | 1 相切 | 2 相交
int relation(const Line &l) const
{
const long double d=l.dis(c);
if (d>r+eps) return 0;
if (abs(d-r)<=eps) return 1;
return 2;
}
// 圆与圆关系
// -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
int relation(const Circle &a) const
{
if (*this==a) return -1;
const long double d=c.dis(a.c);
if (d>r+a.r+eps) return 0;
if (abs(d-r-a.r)<=eps) return 1;
if (abs(d-abs(r-a.r))<=eps) return 3;
if (d<abs(r-a.r)-eps) return 4;
return 2;
}
// 直线与圆的交点
vector<Point> inter(const Line &l) const
{
const long double d=l.dis(c);
const Point p=l.proj(c);
const int t=relation(l);
if (t==0) return vector<Point>();
if (t==1) return vector<Point>{p};
const long double k=sqrt(r*r-d*d);
return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
}
// 圆与圆交点
vector<Point> inter(const Circle &a) const
{
const long double d=c.dis(a.c);
const int t=relation(a);
if (t==-1 || t==0 || t==4) return vector<Point>();
Point e=a.c-c; e=e/e.len()*r;
if (t==1 || t==3)
{
if (r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
return vector<Point>{c-e};
}
const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-costh*costh);
return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
}
// 圆与圆交面积
long double inter_area(const Circle &a) const
{
const long double d=c.dis(a.c);
const int t=relation(a);
if (t==-1) return area();
if (t<2) return 0;
if (t>2) return min(area(),a.area());
const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d),costh2=(a.r*a.r+d*d-r*r)/(2*a.r*d);
const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-costh2*costh2);
const long double th1=acos(costh1),th2=acos(costh2);
return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
}
// 过圆外一点圆的切线
vector<Line> tangent(const Point &a) const
{
const int t=is_in(a);
if (t==1) return vector<Line>();
if (t==-1)
{
const Point v={-(a-c).y,(a-c).x};
return vector<Line>{{a,v}};
}
Point e=a-c; e=e/e.len()*r;
const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);
const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
return vector<Line>{{a,t1-a},{a,t2-a}};
}
// 两圆的公切线
vector<Line> tangent(const Circle &a) const
{
const int t=relation(a);
vector<Line> lines;
if (t==-1 || t==4) return lines;
if (t==1 || t==3)
{
const Point p=inter(a)[0],v={-(a.c-c).y,(a.c-c).x};
lines.push_back({p,v});
}
const long double d=c.dis(a.c);
const Point e=(a.c-c)/(a.c-c).len();
if (t<=2)
{
const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
}
if (t==0)
{
const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
}
return lines;
}
};
Circle circ(const Point &a,const Point &b,const Point &c)
{
const Point v1=b-a,v2=c-a;
const Point _v1={v1.y,-v1.x},_v2={v2.y,-v2.x};
const Line l1={(a+b)/2,_v1},l2={(a+c)/2,_v2};
const Point o=l1.inter(l2);
return {o,o.dis(a)};
}
struct Minc
{
vector<Point> p;
vector<vector<Circle>> c;
vector<vector<long double>> dp;
vector<vector<size_t>> nxt;
Minc(const vector<Point> &p):p(p),c(p.size(),vector<Circle>(p.size())),dp(p.size(),vector<long double>(p.size(),1e20)),nxt(p.size(),vector<size_t>(p.size())) {}
long double solve(const int k)
{
const int n=p.size()-1;
for (int i=1;i<=n;i++)
{
c[i][i]={p[i],0.0};
for (int j=i+1;j<=n;j++)
{
c[i][j]=c[i][j-1];
if (!c[i][j].is_in(p[j]))
{
c[i][j]={p[j],0.0};
for (int k=i;k<j;k++)
{
if (!c[i][j].is_in(p[k]))
{
c[i][j]={(p[j]+p[k])/2,(p[j]-p[k]).len()/2};
for (int l=i;l<k;l++)
{
if (!c[i][j].is_in(p[l]))
{
c[i][j]=circ(p[j],p[k],p[l]);
}
}
}
}
}
}
}
for (int i=1;i<=n;i++)
{
size_t now=n+1;
nxt[i][i]=i+1;
for (int j=i-1;j>=1;j--)
{
if (abs(c[j][i].r-c[j+1][i].r)<=eps) nxt[j][i]=nxt[j+1][i];
else nxt[j][i]=j+1;
}
}
dp[0][0]=0.0;
for (int i=1;i<=n;i++)
{
for (int k=1;k<=i;k++)
{
for (int j=1;j<=i;j=nxt[j][i])
{
dp[i][k]=min(dp[i][k],dp[j-1][k-1]+c[j][i].r);
}
}
}
return dp[n][k];
}
};
int main()
{
int n,k;
long long x1;
scanf("%d%d%lld",&n,&k,&x1);
vector<long long> x(n+1),y(n+1);
for (int i=1;i<=n;i++)
{
x[i]=i==1?x1:(y[i-1]*233811181+1)%2147483647;
y[i]=(x[i]*233811181+1)%2147483647;
}
vector<Point> p(n+1);
for (int i=1;i<=n;i++) p[i]={1.0*x[i],1.0*y[i]};
Minc minc(p);
printf("%.12Lf\n",minc.solve(k));
return 0;
}
詳細信息
Test #1:
score: 100
Accepted
time: 2ms
memory: 4368kb
input:
100 23 213
output:
1319350480.800732538686
result:
ok found '1319350480.8007326', expected '1319350480.8007326', error '0.0000000'
Test #2:
score: 0
Accepted
time: 1ms
memory: 3704kb
input:
10 1 1060
output:
1042753143.345167686581
result:
ok found '1042753143.3451676', expected '1042753143.3451676', error '0.0000000'
Test #3:
score: 0
Accepted
time: 1ms
memory: 3648kb
input:
10 10 2373
output:
0.000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #4:
score: 0
Accepted
time: 1ms
memory: 3716kb
input:
10 2 3396
output:
1236610536.946923031239
result:
ok found '1236610536.9469230', expected '1236610536.9469230', error '0.0000000'
Test #5:
score: 0
Accepted
time: 1ms
memory: 3640kb
input:
10 3 1998
output:
973790809.822444227524
result:
ok found '973790809.8224442', expected '973790809.8224442', error '0.0000000'
Test #6:
score: 0
Accepted
time: 1ms
memory: 3660kb
input:
10 4 562
output:
910867389.906932937622
result:
ok found '910867389.9069330', expected '910867389.9069330', error '0.0000000'
Test #7:
score: 0
Accepted
time: 1ms
memory: 3676kb
input:
10 5 6048
output:
818240814.710514981998
result:
ok found '818240814.7105150', expected '818240814.7105150', error '0.0000000'
Test #8:
score: 0
Accepted
time: 1ms
memory: 3676kb
input:
10 6 2524
output:
500106979.346776274440
result:
ok found '500106979.3467762', expected '500106979.3467762', error '0.0000000'
Test #9:
score: 0
Accepted
time: 0ms
memory: 3700kb
input:
10 7 5415
output:
559478971.432005886687
result:
ok found '559478971.4320059', expected '559478971.4320059', error '0.0000000'
Test #10:
score: 0
Accepted
time: 0ms
memory: 3708kb
input:
10 8 1438
output:
500309745.462769993639
result:
ok found '500309745.4627700', expected '500309745.4627700', error '0.0000000'
Test #11:
score: 0
Accepted
time: 1ms
memory: 3652kb
input:
10 9 3172
output:
162279748.875345173947
result:
ok found '162279748.8753452', expected '162279748.8753452', error '0.0000000'
Test #12:
score: 0
Accepted
time: 2ms
memory: 4424kb
input:
100 1 8316
output:
1320052902.152290252736
result:
ok found '1320052902.1522903', expected '1320052902.1522903', error '0.0000000'
Test #13:
score: 0
Accepted
time: 2ms
memory: 4400kb
input:
100 100 4179
output:
0.000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #14:
score: 0
Accepted
time: 2ms
memory: 4424kb
input:
100 12 3405
output:
1329687126.130454878556
result:
ok found '1329687126.1304548', expected '1329687126.1304548', error '0.0000000'
Test #15:
score: 0
Accepted
time: 2ms
memory: 4420kb
input:
100 16 8378
output:
1338056514.484269471723
result:
ok found '1338056514.4842694', expected '1338056514.4842694', error '0.0000000'
Test #16:
score: 0
Accepted
time: 2ms
memory: 4400kb
input:
100 2 1858
output:
1310392496.143058079295
result:
ok found '1310392496.1430581', expected '1310392496.1430581', error '0.0000000'
Test #17:
score: 0
Accepted
time: 0ms
memory: 4380kb
input:
100 25 4596
output:
1440464106.622929672012
result:
ok found '1440464106.6229296', expected '1440464106.6229298', error '0.0000000'
Test #18:
score: 0
Accepted
time: 2ms
memory: 4364kb
input:
100 3 5633
output:
1399621082.614273683401
result:
ok found '1399621082.6142738', expected '1399621082.6142738', error '0.0000000'
Test #19:
score: 0
Accepted
time: 2ms
memory: 4456kb
input:
100 32 7827
output:
1342073760.532232963713
result:
ok found '1342073760.5322330', expected '1342073760.5322330', error '0.0000000'
Test #20:
score: 0
Accepted
time: 2ms
memory: 4508kb
input:
100 4 3693
output:
1339808706.709868879057
result:
ok found '1339808706.7098689', expected '1339808706.7098689', error '0.0000000'
Test #21:
score: 0
Accepted
time: 2ms
memory: 4388kb
input:
100 5 2252
output:
1394874243.505704202340
result:
ok found '1394874243.5057042', expected '1394874243.5057042', error '0.0000000'
Test #22:
score: 0
Accepted
time: 2ms
memory: 4468kb
input:
100 50 4254
output:
1322809748.405283543980
result:
ok found '1322809748.4052835', expected '1322809748.4052832', error '0.0000000'
Test #23:
score: 0
Accepted
time: 2ms
memory: 4456kb
input:
100 6 53
output:
1364441356.170098817209
result:
ok found '1364441356.1700988', expected '1364441356.1700988', error '0.0000000'
Test #24:
score: 0
Accepted
time: 2ms
memory: 4408kb
input:
100 64 4337
output:
1180754550.242283903877
result:
ok found '1180754550.2422838', expected '1180754550.2422838', error '0.0000000'
Test #25:
score: 0
Accepted
time: 1ms
memory: 4420kb
input:
100 7 5366
output:
1423557626.358679703437
result:
ok found '1423557626.3586798', expected '1423557626.3586798', error '0.0000000'
Test #26:
score: 0
Accepted
time: 0ms
memory: 4508kb
input:
100 8 8509
output:
1353289305.351995564532
result:
ok found '1353289305.3519955', expected '1353289305.3519957', error '0.0000000'
Test #27:
score: 0
Accepted
time: 2ms
memory: 4416kb
input:
100 9 1423
output:
1228887266.566166959354
result:
ok found '1228887266.5661669', expected '1228887266.5661671', error '0.0000000'
Test #28:
score: 0
Accepted
time: 2ms
memory: 4456kb
input:
100 91 4806
output:
656574218.508675504534
result:
ok found '656574218.5086755', expected '656574218.5086756', error '0.0000000'
Test #29:
score: 0
Accepted
time: 2ms
memory: 4392kb
input:
100 92 4024
output:
794693428.616224033700
result:
ok found '794693428.6162241', expected '794693428.6162238', error '0.0000000'
Test #30:
score: 0
Accepted
time: 2ms
memory: 4376kb
input:
100 93 606
output:
677641787.486312211491
result:
ok found '677641787.4863123', expected '677641787.4863122', error '0.0000000'
Test #31:
score: 0
Accepted
time: 2ms
memory: 4420kb
input:
100 94 7265
output:
686423239.262602770352
result:
ok found '686423239.2626028', expected '686423239.2626028', error '0.0000000'
Test #32:
score: 0
Accepted
time: 2ms
memory: 4404kb
input:
100 95 8469
output:
328187125.923595068714
result:
ok found '328187125.9235951', expected '328187125.9235951', error '0.0000000'
Test #33:
score: 0
Accepted
time: 1ms
memory: 4380kb
input:
100 96 1079
output:
492964787.625908539223
result:
ok found '492964787.6259086', expected '492964787.6259086', error '0.0000000'
Test #34:
score: 0
Accepted
time: 2ms
memory: 4384kb
input:
100 97 5453
output:
258652807.790656469864
result:
ok found '258652807.7906565', expected '258652807.7906564', error '0.0000000'
Test #35:
score: 0
Accepted
time: 2ms
memory: 4376kb
input:
100 98 1778
output:
159490192.118890693324
result:
ok found '159490192.1188907', expected '159490192.1188908', error '0.0000000'
Test #36:
score: 0
Accepted
time: 1ms
memory: 4384kb
input:
100 99 1825
output:
33793756.328998042445
result:
ok found '33793756.3289980', expected '33793756.3289980', error '0.0000000'
Test #37:
score: 0
Accepted
time: 73ms
memory: 73772kb
input:
1000 1 2453
output:
1486878333.285857413197
result:
ok found '1486878333.2858574', expected '1486878333.2858574', error '0.0000000'
Test #38:
score: 0
Accepted
time: 66ms
memory: 73780kb
input:
1000 1000 1798
output:
0.000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #39:
score: 0
Accepted
time: 69ms
memory: 73844kb
input:
1000 125 43
output:
1474031969.517423305311
result:
ok found '1474031969.5174234', expected '1474031969.5174232', error '0.0000000'
Test #40:
score: 0
Accepted
time: 79ms
memory: 73860kb
input:
1000 128 8107
output:
1440374614.939197620726
result:
ok found '1440374614.9391975', expected '1440374614.9391975', error '0.0000000'
Test #41:
score: 0
Accepted
time: 77ms
memory: 73864kb
input:
1000 15 6639
output:
1491336935.553624947090
result:
ok found '1491336935.5536249', expected '1491336935.5536251', error '0.0000000'
Test #42:
score: 0
Accepted
time: 87ms
memory: 73792kb
input:
1000 16 1251
output:
1445211807.116096374812
result:
ok found '1445211807.1160963', expected '1445211807.1160963', error '0.0000000'
Test #43:
score: 0
Accepted
time: 78ms
memory: 73868kb
input:
1000 2 1303
output:
1468989868.648602263187
result:
ok found '1468989868.6486022', expected '1468989868.6486022', error '0.0000000'
Test #44:
score: 0
Accepted
time: 67ms
memory: 73788kb
input:
1000 250 4457
output:
1487674970.766015956062
result:
ok found '1487674970.7660160', expected '1487674970.7660158', error '0.0000000'
Test #45:
score: 0
Accepted
time: 67ms
memory: 73868kb
input:
1000 256 4135
output:
1474218271.514077227563
result:
ok found '1474218271.5140772', expected '1474218271.5140772', error '0.0000000'
Test #46:
score: 0
Accepted
time: 67ms
memory: 73868kb
input:
1000 3 713
output:
1482496228.990477660089
result:
ok found '1482496228.9904776', expected '1482496228.9904778', error '0.0000000'
Test #47:
score: 0
Accepted
time: 71ms
memory: 73920kb
input:
1000 31 8139
output:
1494361943.479919489240
result:
ok found '1494361943.4799194', expected '1494361943.4799194', error '0.0000000'
Test #48:
score: 0
Accepted
time: 73ms
memory: 73776kb
input:
1000 32 7916
output:
1499333171.093864779687
result:
ok found '1499333171.0938647', expected '1499333171.0938647', error '0.0000000'
Test #49:
score: 0
Accepted
time: 68ms
memory: 73788kb
input:
1000 4 2432
output:
1455826569.039410223253
result:
ok found '1455826569.0394101', expected '1455826569.0394101', error '0.0000000'
Test #50:
score: 0
Accepted
time: 68ms
memory: 73788kb
input:
1000 5 2457
output:
1452189628.196714064572
result:
ok found '1452189628.1967142', expected '1452189628.1967139', error '0.0000000'
Test #51:
score: 0
Accepted
time: 59ms
memory: 73864kb
input:
1000 500 8734
output:
1432279300.566278453683
result:
ok found '1432279300.5662785', expected '1432279300.5662787', error '0.0000000'
Test #52:
score: 0
Accepted
time: 70ms
memory: 73820kb
input:
1000 512 1866
output:
1446804508.035186520778
result:
ok found '1446804508.0351865', expected '1446804508.0351865', error '0.0000000'
Test #53:
score: 0
Accepted
time: 57ms
memory: 73772kb
input:
1000 6 1580
output:
1490178756.856603475055
result:
ok found '1490178756.8566034', expected '1490178756.8566034', error '0.0000000'
Test #54:
score: 0
Accepted
time: 74ms
memory: 73772kb
input:
1000 62 3047
output:
1482100829.646710895351
result:
ok found '1482100829.6467109', expected '1482100829.6467109', error '0.0000000'
Test #55:
score: 0
Accepted
time: 59ms
memory: 73780kb
input:
1000 64 4836
output:
1441850815.855361351511
result:
ok found '1441850815.8553615', expected '1441850815.8553615', error '0.0000000'
Test #56:
score: 0
Accepted
time: 81ms
memory: 73792kb
input:
1000 7 5269
output:
1473104490.728798354277
result:
ok found '1473104490.7287984', expected '1473104490.7287984', error '0.0000000'
Test #57:
score: 0
Accepted
time: 80ms
memory: 73748kb
input:
1000 8 2649
output:
1459133296.606623450643
result:
ok found '1459133296.6066234', expected '1459133296.6066234', error '0.0000000'
Test #58:
score: 0
Accepted
time: 62ms
memory: 73916kb
input:
1000 9 3999
output:
1482914523.380703903502
result:
ok found '1482914523.3807039', expected '1482914523.3807039', error '0.0000000'
Test #59:
score: 0
Accepted
time: 69ms
memory: 73788kb
input:
1000 991 3610
output:
295501032.478087428870
result:
ok found '295501032.4780874', expected '295501032.4780874', error '0.0000000'
Test #60:
score: 0
Accepted
time: 59ms
memory: 73852kb
input:
1000 992 3030
output:
337274092.654038187873
result:
ok found '337274092.6540382', expected '337274092.6540381', error '0.0000000'
Test #61:
score: 0
Accepted
time: 76ms
memory: 73788kb
input:
1000 993 6980
output:
222375113.105798610719
result:
ok found '222375113.1057986', expected '222375113.1057986', error '0.0000000'
Test #62:
score: 0
Accepted
time: 89ms
memory: 73916kb
input:
1000 994 7222
output:
218007091.693304088083
result:
ok found '218007091.6933041', expected '218007091.6933041', error '0.0000000'
Test #63:
score: 0
Accepted
time: 79ms
memory: 73824kb
input:
1000 995 1323
output:
169577520.223652874527
result:
ok found '169577520.2236529', expected '169577520.2236529', error '0.0000000'
Test #64:
score: 0
Accepted
time: 82ms
memory: 73748kb
input:
1000 996 2761
output:
135524743.911448715196
result:
ok found '135524743.9114487', expected '135524743.9114488', error '0.0000000'
Test #65:
score: 0
Accepted
time: 68ms
memory: 73752kb
input:
1000 997 4946
output:
87043806.422792088611
result:
ok found '87043806.4227921', expected '87043806.4227921', error '0.0000000'
Test #66:
score: 0
Accepted
time: 63ms
memory: 73772kb
input:
1000 998 842
output:
24094936.551191687944
result:
ok found '24094936.5511917', expected '24094936.5511917', error '0.0000000'
Test #67:
score: 0
Accepted
time: 64ms
memory: 73784kb
input:
1000 999 5078
output:
4597519.064655034141
result:
ok found '4597519.0646550', expected '4597519.0646550', error '0.0000000'
Test #68:
score: 0
Accepted
time: 312ms
memory: 284980kb
input:
2000 1 2633
output:
1502350354.499526989530
result:
ok found '1502350354.4995270', expected '1502350354.4995270', error '0.0000000'
Test #69:
score: 0
Accepted
time: 272ms
memory: 285032kb
input:
2000 1000 6248
output:
1469507093.404211048968
result:
ok found '1469507093.4042110', expected '1469507093.4042110', error '0.0000000'
Test #70:
score: 0
Accepted
time: 289ms
memory: 285060kb
input:
2000 1024 2507
output:
1448066815.318478936562
result:
ok found '1448066815.3184788', expected '1448066815.3184788', error '0.0000000'
Test #71:
score: 0
Accepted
time: 310ms
memory: 285004kb
input:
2000 125 3002
output:
1476846542.031891053310
result:
ok found '1476846542.0318911', expected '1476846542.0318909', error '0.0000000'
Test #72:
score: 0
Accepted
time: 354ms
memory: 285020kb
input:
2000 128 5622
output:
1464957942.640037996694
result:
ok found '1464957942.6400380', expected '1464957942.6400380', error '0.0000000'
Test #73:
score: 0
Accepted
time: 303ms
memory: 284984kb
input:
2000 15 5891
output:
1490626300.155867164955
result:
ok found '1490626300.1558671', expected '1490626300.1558671', error '0.0000000'
Test #74:
score: 0
Accepted
time: 265ms
memory: 284960kb
input:
2000 16 1750
output:
1504400245.414980667643
result:
ok found '1504400245.4149806', expected '1504400245.4149806', error '0.0000000'
Test #75:
score: 0
Accepted
time: 321ms
memory: 284964kb
input:
2000 1990 6698
output:
313951388.404651154153
result:
ok found '313951388.4046512', expected '313951388.4046511', error '0.0000000'
Test #76:
score: 0
Accepted
time: 289ms
memory: 285108kb
input:
2000 1991 80
output:
248800118.679306058533
result:
ok found '248800118.6793061', expected '248800118.6793060', error '0.0000000'
Test #77:
score: 0
Accepted
time: 332ms
memory: 285116kb
input:
2000 1992 4802
output:
257156356.521679496858
result:
ok found '257156356.5216795', expected '257156356.5216795', error '0.0000000'
Test #78:
score: 0
Accepted
time: 333ms
memory: 284948kb
input:
2000 1993 169
output:
197117968.448224813939
result:
ok found '197117968.4482248', expected '197117968.4482248', error '0.0000000'
Test #79:
score: 0
Accepted
time: 353ms
memory: 285112kb
input:
2000 1994 6269
output:
109695555.808850097419
result:
ok found '109695555.8088501', expected '109695555.8088501', error '0.0000000'
Test #80:
score: 0
Accepted
time: 341ms
memory: 284944kb
input:
2000 1995 3452
output:
179563229.396784273064
result:
ok found '179563229.3967843', expected '179563229.3967843', error '0.0000000'
Test #81:
score: 0
Accepted
time: 363ms
memory: 285100kb
input:
2000 1996 2191
output:
84783513.645589572930
result:
ok found '84783513.6455896', expected '84783513.6455896', error '0.0000000'
Test #82:
score: 0
Accepted
time: 329ms
memory: 284964kb
input:
2000 1997 7803
output:
53635859.339989974993
result:
ok found '53635859.3399900', expected '53635859.3399900', error '0.0000000'
Test #83:
score: 0
Accepted
time: 317ms
memory: 285024kb
input:
2000 1998 8341
output:
33466185.814944227926
result:
ok found '33466185.8149442', expected '33466185.8149442', error '0.0000000'
Test #84:
score: 0
Accepted
time: 312ms
memory: 285116kb
input:
2000 1999 6773
output:
2608075.465283261316
result:
ok found '2608075.4652833', expected '2608075.4652833', error '0.0000000'
Test #85:
score: 0
Accepted
time: 287ms
memory: 285028kb
input:
2000 2 4496
output:
1484602254.131001193775
result:
ok found '1484602254.1310012', expected '1484602254.1310012', error '0.0000000'
Test #86:
score: 0
Accepted
time: 307ms
memory: 285072kb
input:
2000 2000 5384
output:
0.000000000000
result:
ok found '0.0000000', expected '0.0000000', error '-0.0000000'
Test #87:
score: 0
Accepted
time: 341ms
memory: 285116kb
input:
2000 250 1029
output:
1465117434.063100559404
result:
ok found '1465117434.0631006', expected '1465117434.0631006', error '0.0000000'
Test #88:
score: 0
Accepted
time: 298ms
memory: 284948kb
input:
2000 256 5220
output:
1481878242.218473969959
result:
ok found '1481878242.2184739', expected '1481878242.2184739', error '0.0000000'
Test #89:
score: 0
Accepted
time: 318ms
memory: 285120kb
input:
2000 3 8403
output:
1489320436.431853223010
result:
ok found '1489320436.4318533', expected '1489320436.4318533', error '0.0000000'
Test #90:
score: 0
Accepted
time: 279ms
memory: 285048kb
input:
2000 31 6950
output:
1477330995.225131030078
result:
ok found '1477330995.2251310', expected '1477330995.2251310', error '0.0000000'
Test #91:
score: 0
Accepted
time: 318ms
memory: 285040kb
input:
2000 32 3632
output:
1496222504.649006322259
result:
ok found '1496222504.6490064', expected '1496222504.6490064', error '0.0000000'
Test #92:
score: 0
Accepted
time: 301ms
memory: 285068kb
input:
2000 4 2987
output:
1477889007.505459023640
result:
ok found '1477889007.5054591', expected '1477889007.5054593', error '0.0000000'
Test #93:
score: 0
Accepted
time: 317ms
memory: 285056kb
input:
2000 5 2580
output:
1485468254.737495114328
result:
ok found '1485468254.7374952', expected '1485468254.7374952', error '0.0000000'
Test #94:
score: 0
Accepted
time: 282ms
memory: 284964kb
input:
2000 500 6270
output:
1475788271.027598771732
result:
ok found '1475788271.0275989', expected '1475788271.0275989', error '0.0000000'
Test #95:
score: 0
Accepted
time: 332ms
memory: 284988kb
input:
2000 512 1864
output:
1470340599.474985653185
result:
ok found '1470340599.4749856', expected '1470340599.4749856', error '0.0000000'
Test #96:
score: 0
Accepted
time: 327ms
memory: 285036kb
input:
2000 6 8814
output:
1497075189.013496002881
result:
ok found '1497075189.0134959', expected '1497075189.0134962', error '0.0000000'
Test #97:
score: 0
Accepted
time: 332ms
memory: 285040kb
input:
2000 62 4139
output:
1490927650.973211951787
result:
ok found '1490927650.9732120', expected '1490927650.9732120', error '0.0000000'
Test #98:
score: 0
Accepted
time: 289ms
memory: 285004kb
input:
2000 64 7700
output:
1494910912.613783401204
result:
ok found '1494910912.6137834', expected '1494910912.6137834', error '0.0000000'
Test #99:
score: 0
Accepted
time: 338ms
memory: 285120kb
input:
2000 7 8304
output:
1488325857.821989718243
result:
ok found '1488325857.8219898', expected '1488325857.8219898', error '0.0000000'
Test #100:
score: 0
Accepted
time: 305ms
memory: 284988kb
input:
2000 8 7774
output:
1507136513.171559004928
result:
ok found '1507136513.1715591', expected '1507136513.1715591', error '0.0000000'
Test #101:
score: 0
Accepted
time: 301ms
memory: 284948kb
input:
2000 9 2618
output:
1492019659.037316270755
result:
ok found '1492019659.0373163', expected '1492019659.0373163', error '0.0000000'
Test #102:
score: 0
Accepted
time: 15ms
memory: 21436kb
input:
500 1 7674
output:
1463672939.781249850057
result:
ok found '1463672939.7812498', expected '1463672939.7812500', error '0.0000000'
Test #103:
score: 0
Accepted
time: 21ms
memory: 21392kb
input:
500 125 1629
output:
1420736329.083827407681
result:
ok found '1420736329.0838275', expected '1420736329.0838273', error '0.0000000'
Test #104:
score: 0
Accepted
time: 14ms
memory: 21476kb
input:
500 15 7376
output:
1465677415.506387916859
result:
ok found '1465677415.5063879', expected '1465677415.5063879', error '0.0000000'
Test #105:
score: 0
Accepted
time: 13ms
memory: 21392kb
input:
500 250 5627
output:
1411074935.882357951370
result:
ok found '1411074935.8823578', expected '1411074935.8823581', error '0.0000000'
Test #106:
score: 0
Accepted
time: 23ms
memory: 21412kb
input:
500 3 2245
output:
1437079231.540981166763
result:
ok found '1437079231.5409811', expected '1437079231.5409811', error '0.0000000'
Test #107:
score: 0
Accepted
time: 12ms
memory: 21484kb
input:
500 31 8072
output:
1487957912.031461420236
result:
ok found '1487957912.0314615', expected '1487957912.0314612', error '0.0000000'
Test #108:
score: 0
Accepted
time: 16ms
memory: 21412kb
input:
500 62 2415
output:
1454787477.649377375492
result:
ok found '1454787477.6493773', expected '1454787477.6493773', error '0.0000000'
Test #109:
score: 0
Accepted
time: 25ms
memory: 21520kb
input:
500 7 1586
output:
1459900114.704660679912
result:
ok found '1459900114.7046607', expected '1459900114.7046607', error '0.0000000'