QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#116381#5667. Meeting Placescjj490168650AC ✓363ms285120kbC++2017.8kb2023-06-28 16:59:082023-06-28 16:59:09

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-28 16:59:09]
  • 评测
  • 测评结果:AC
  • 用时:363ms
  • 内存:285120kb
  • [2023-06-28 16:59:08]
  • 提交

answer

#include <bits/stdc++.h>
using namespace std;

using point_t=long double;  //全局数据类型,可修改为 long long 等

constexpr point_t eps=1e-8;
constexpr long double PI=3.1415926535897932384l;

// 点与向量
template<typename T> struct point
{
    T x,y;

    bool operator==(const point &a) const {return (abs(x-a.x)<=eps && abs(y-a.y)<=eps);}
    bool operator<(const point &a) const {if (abs(x-a.x)<=eps) return y<a.y-eps; return x<a.x-eps;}
    bool operator>(const point &a) const {return !(*this<a || *this==a);}
    point operator+(const point &a) const {return {x+a.x,y+a.y};}
    point operator-(const point &a) const {return {x-a.x,y-a.y};}
    point operator-() const {return {-x,-y};}
    point operator*(const T k) const {return {k*x,k*y};}
    point operator/(const T k) const {return {x/k,y/k};}
    T operator*(const point &a) const {return x*a.x+y*a.y;}  // 点积
    T operator^(const point &a) const {return x*a.y-y*a.x;}  // 叉积,注意优先级
    int toleft(const point &a) const {const auto t=(*this)^a; return (t>eps)-(t<-eps);}  // to-left 测试
    T len2() const {return (*this)*(*this);}  // 向量长度的平方
    T dis2(const point &a) const {return (a-(*this)).len2();}  // 两点距离的平方

    // 涉及浮点数
    long double len() const {return sqrtl(len2());}  // 向量长度
    long double dis(const point &a) const {return sqrtl(dis2(a));}  // 两点距离
    long double ang(const point &a) const {return acosl(max(-1.0l,min(1.0l,((*this)*a)/(len()*a.len()))));}  // 向量夹角
    point rot(const long double rad) const {return {x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad)};}  // 逆时针旋转(给定角度)
    point rot(const long double cosr,const long double sinr) const {return {x*cosr-y*sinr,x*sinr+y*cosr};}  // 逆时针旋转(给定角度的正弦与余弦)
};

using Point=point<point_t>;

// 极角排序
struct argcmp
{
    bool operator()(const Point &a,const Point &b) const
    {
        const auto quad=[](const Point &a)
        {
            if (a.y<-eps) return 1;
            if (a.y>eps) return 4;
            if (a.x<-eps) return 5;
            if (a.x>eps) return 3;
            return 2;
        };
        const int qa=quad(a),qb=quad(b);
        if (qa!=qb) return qa<qb;
        const auto t=a^b;
        // if (abs(t)<=eps) return a*a<b*b-eps;  // 不同长度的向量需要分开
        return t>eps;
    }
};

// 直线
template<typename T> struct line
{
    point<T> p,v;  // p 为直线上一点,v 为方向向量

    bool operator==(const line &a) const {return v.toleft(a.v)==0 && v.toleft(p-a.p)==0;}
    int toleft(const point<T> &a) const {return v.toleft(a-p);}  // to-left 测试
    bool operator<(const line &a) const  // 半平面交算法定义的排序
    {
        if (abs(v^a.v)<=eps && v*a.v>=-eps) return toleft(a.p)==-1;
        return argcmp()(v,a.v);
    }

    // 涉及浮点数
    point<T> inter(const line &a) const {return p+v*((a.v^(p-a.p))/(v^a.v));}  // 直线交点
    long double dis(const point<T> &a) const {return abs(v^(a-p))/v.len();}  // 点到直线距离
    point<T> proj(const point<T> &a) const {return p+v*((v*(a-p))/(v*v));}  // 点在直线上的投影
};

using Line=line<point_t>;

//线段
template<typename T> struct segment
{
    point<T> a,b;

    bool operator<(const segment &s) const {return make_pair(a,b)<make_pair(s.a,s.b);}

    // 判定性函数建议在整数域使用

    // 判断点是否在线段上
    // -1 点在线段端点 | 0 点不在线段上 | 1 点严格在线段上
    int is_on(const point<T> &p) const  
    {
        if (p==a || p==b) return -1;
        return (p-a).toleft(p-b)==0 && (p-a)*(p-b)<-eps;
    }

    // 判断线段直线是否相交
    // -1 直线经过线段端点 | 0 线段和直线不相交 | 1 线段和直线严格相交
    int is_inter(const line<T> &l) const
    {
        if (l.toleft(a)==0 || l.toleft(b)==0) return -1;
        return l.toleft(a)!=l.toleft(b);
    }
    
    // 判断两线段是否相交
    // -1 在某一线段端点处相交 | 0 两线段不相交 | 1 两线段严格相交
    int is_inter(const segment<T> &s) const
    {
        if (is_on(s.a) || is_on(s.b) || s.is_on(a) || s.is_on(b)) return -1;
        const line<T> l{a,b-a},ls{s.a,s.b-s.a};
        return l.toleft(s.a)*l.toleft(s.b)==-1 && ls.toleft(a)*ls.toleft(b)==-1;
    }

    // 点到线段距离
    long double dis(const point<T> &p) const
    {
        if ((p-a)*(b-a)<-eps || (p-b)*(a-b)<-eps) return min(p.dis(a),p.dis(b));
        const line<T> l{a,b-a};
        return l.dis(p);
    }

    // 两线段间距离
    long double dis(const segment<T> &s) const
    {
        if (is_inter(s)) return 0;
        return min({dis(s.a),dis(s.b),s.dis(a),s.dis(b)});
    }
};

using Segment=segment<point_t>;

// 多边形
template<typename T> struct polygon
{
    vector<point<T>> p;  // 以逆时针顺序存储

    size_t nxt(const size_t i) const {return i==p.size()-1?0:i+1;}
    size_t pre(const size_t i) const {return i==0?p.size()-1:i-1;}
    
    // 回转数
    // 返回值第一项表示点是否在多边形边上
    // 对于狭义多边形,回转数为 0 表示点在多边形外,否则点在多边形内
    pair<bool,int> winding(const point<T> &a) const
    {
        int cnt=0;
        for (size_t i=0;i<p.size();i++)
        {
            const point<T> u=p[i],v=p[nxt(i)];
            if (abs((a-u)^(a-v))<=eps && (a-u)*(a-v)<=eps) return {true,0};
            if (abs(u.y-v.y)<=eps) continue;
            const Line uv={u,v-u};
            if (u.y<v.y-eps && uv.toleft(a)<=0) continue;
            if (u.y>v.y+eps && uv.toleft(a)>=0) continue;
            if (u.y<a.y-eps && v.y>=a.y-eps) cnt++;
            if (u.y>=a.y-eps && v.y<a.y-eps) cnt--;
        }
        return {false,cnt};
    }

    // 多边形面积的两倍
    // 可用于判断点的存储顺序是顺时针或逆时针
    T area() const
    {
        T sum=0;
        for (size_t i=0;i<p.size();i++) sum+=p[i]^p[nxt(i)];
        return sum;
    }

    // 多边形的周长
    long double circ() const
    {
        long double sum=0;
        for (size_t i=0;i<p.size();i++) sum+=p[i].dis(p[nxt(i)]);
        return sum;
    }
};

using Polygon=polygon<point_t>;

//凸多边形
template<typename T> struct convex: polygon<T>
{
    // 闵可夫斯基和
    convex operator+(const convex &c) const  
    {
        const auto &p=this->p;
        vector<Segment> e1(p.size()),e2(c.p.size()),edge(p.size()+c.p.size());
        vector<point<T>> res; res.reserve(p.size()+c.p.size());
        const auto cmp=[](const Segment &u,const Segment &v) {return argcmp()(u.b-u.a,v.b-v.a);};
        for (size_t i=0;i<p.size();i++) e1[i]={p[i],p[this->nxt(i)]};
        for (size_t i=0;i<c.p.size();i++) e2[i]={c.p[i],c.p[c.nxt(i)]};
        rotate(e1.begin(),min_element(e1.begin(),e1.end(),cmp),e1.end());
        rotate(e2.begin(),min_element(e2.begin(),e2.end(),cmp),e2.end());
        merge(e1.begin(),e1.end(),e2.begin(),e2.end(),edge.begin(),cmp);
        const auto check=[](const vector<point<T>> &res,const point<T> &u)
        {
            const auto back1=res.back(),back2=*prev(res.end(),2);
            return (back1-back2).toleft(u-back1)==0 && (back1-back2)*(u-back1)>=-eps;
        };
        auto u=e1[0].a+e2[0].a;
        for (const auto &v:edge)
        {
            while (res.size()>1 && check(res,u)) res.pop_back();
            res.push_back(u);
            u=u+v.b-v.a;
        }
        if (res.size()>1 && check(res,res[0])) res.pop_back();
        return {res};
    }

    // 旋转卡壳
    // func 为更新答案的函数,可以根据题目调整位置
    template<typename F> void rotcaliper(const F &func) const
    {
        const auto &p=this->p;
        const auto area=[](const point<T> &u,const point<T> &v,const point<T> &w){return (w-u)^(w-v);};
        for (size_t i=0,j=1;i<p.size();i++)
        {
            const auto nxti=this->nxt(i);
            func(p[i],p[nxti],p[j]);
            while (area(p[this->nxt(j)],p[i],p[nxti])>=area(p[j],p[i],p[nxti]))
            {
                j=this->nxt(j);
                func(p[i],p[nxti],p[j]);
            }
        }
    }

    // 凸多边形的直径的平方
    T diameter2() const
    {
        const auto &p=this->p;
        if (p.size()==1) return 0;
        if (p.size()==2) return p[0].dis2(p[1]);
        T ans=0;
        auto func=[&](const point<T> &u,const point<T> &v,const point<T> &w){ans=max({ans,w.dis2(u),w.dis2(v)});};
        rotcaliper(func);
        return ans;
    }
    
    // 判断点是否在凸多边形内
    // 复杂度 O(logn)
    // -1 点在多边形边上 | 0 点在多边形外 | 1 点在多边形内
    int is_in(const point<T> &a) const
    {
        const auto &p=this->p;
        if (p.size()==1) return a==p[0]?-1:0;
        if (p.size()==2) return segment<T>{p[0],p[1]}.is_on(a)?-1:0; 
        if (a==p[0]) return -1;
        if ((p[1]-p[0]).toleft(a-p[0])==-1 || (p.back()-p[0]).toleft(a-p[0])==1) return 0;
        const auto cmp=[&](const Point &u,const Point &v){return (u-p[0]).toleft(v-p[0])==1;};
        const size_t i=lower_bound(p.begin()+1,p.end(),a,cmp)-p.begin();
        if (i==1) return segment<T>{p[0],p[i]}.is_on(a)?-1:0;
        if (i==p.size()-1 && segment<T>{p[0],p[i]}.is_on(a)) return -1;
        if (segment<T>{p[i-1],p[i]}.is_on(a)) return -1;
        return (p[i]-p[i-1]).toleft(a-p[i-1])>0;
    }

    // 凸多边形关于某一方向的极点
    // 复杂度 O(logn)
    // 参考资料:https://codeforces.com/blog/entry/48868
    template<typename F> size_t extreme(const F &dir) const
    {
        const auto &p=this->p;
        const auto check=[&](const size_t i){return dir(p[i]).toleft(p[this->nxt(i)]-p[i])>=0;};
        const auto dir0=dir(p[0]); const auto check0=check(0);
        if (!check0 && check(p.size()-1)) return 0;
        const auto cmp=[&](const Point &v)
        {
            const size_t vi=&v-p.data();
            if (vi==0) return 1;
            const auto checkv=check(vi);
            const auto t=dir0.toleft(v-p[0]);
            if (vi==1 && checkv==check0 && t==0) return 1;
            return checkv^(checkv==check0 && t<=0);
        };
        return partition_point(p.begin(),p.end(),cmp)-p.begin();
    }

    // 过凸多边形外一点求凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    // 必须保证点在多边形外
    pair<size_t,size_t> tangent(const point<T> &a) const
    {
        const size_t i=extreme([&](const point<T> &u){return u-a;});
        const size_t j=extreme([&](const point<T> &u){return a-u;});
        return {i,j};
    }

    // 求平行于给定直线的凸多边形的切线,返回切点下标
    // 复杂度 O(logn)
    pair<size_t,size_t> tangent(const line<T> &a) const
    {
        const size_t i=extreme([&](...){return a.v;});
        const size_t j=extreme([&](...){return -a.v;});
        return {i,j};
    }
};

using Convex=convex<point_t>;

// 圆
struct Circle
{
    Point c;
    long double r;

    bool operator==(const Circle &a) const {return c==a.c && abs(r-a.r)<=eps;}
    long double circ() const {return 2*PI*r;}  // 周长
    long double area() const {return PI*r*r;}  // 面积

    // 点与圆的关系
    // -1 圆上 | 0 圆外 | 1 圆内
    int is_in(const Point &p) const {const long double d=p.dis(c); return abs(d-r)<=eps?-1:d<r-eps;}

    // 直线与圆关系
    // 0 相离 | 1 相切 | 2 相交
    int relation(const Line &l) const
    {
        const long double d=l.dis(c);
        if (d>r+eps) return 0;
        if (abs(d-r)<=eps) return 1;
        return 2;
    }

    // 圆与圆关系
    // -1 相同 | 0 相离 | 1 外切 | 2 相交 | 3 内切 | 4 内含
    int relation(const Circle &a) const
    {
        if (*this==a) return -1;
        const long double d=c.dis(a.c);
        if (d>r+a.r+eps) return 0;
        if (abs(d-r-a.r)<=eps) return 1;
        if (abs(d-abs(r-a.r))<=eps) return 3;
        if (d<abs(r-a.r)-eps) return 4;
        return 2;
    }

    // 直线与圆的交点
    vector<Point> inter(const Line &l) const
    {
        const long double d=l.dis(c);
        const Point p=l.proj(c);
        const int t=relation(l);
        if (t==0) return vector<Point>();
        if (t==1) return vector<Point>{p};
        const long double k=sqrt(r*r-d*d);
        return vector<Point>{p-(l.v/l.v.len())*k,p+(l.v/l.v.len())*k};
    }

    // 圆与圆交点
    vector<Point> inter(const Circle &a) const
    {
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if (t==-1 || t==0 || t==4) return vector<Point>();
        Point e=a.c-c; e=e/e.len()*r;
        if (t==1 || t==3) 
        {
            if (r*r+d*d-a.r*a.r>=-eps) return vector<Point>{c+e};
            return vector<Point>{c-e};
        }
        const long double costh=(r*r+d*d-a.r*a.r)/(2*r*d),sinth=sqrt(1-costh*costh);
        return vector<Point>{c+e.rot(costh,-sinth),c+e.rot(costh,sinth)};
    }

    // 圆与圆交面积
    long double inter_area(const Circle &a) const
    {
        const long double d=c.dis(a.c);
        const int t=relation(a);
        if (t==-1) return area();
        if (t<2) return 0;
        if (t>2) return min(area(),a.area());
        const long double costh1=(r*r+d*d-a.r*a.r)/(2*r*d),costh2=(a.r*a.r+d*d-r*r)/(2*a.r*d);
        const long double sinth1=sqrt(1-costh1*costh1),sinth2=sqrt(1-costh2*costh2);
        const long double th1=acos(costh1),th2=acos(costh2);
        return r*r*(th1-costh1*sinth1)+a.r*a.r*(th2-costh2*sinth2);
    }

    // 过圆外一点圆的切线
    vector<Line> tangent(const Point &a) const
    {
        const int t=is_in(a);
        if (t==1) return vector<Line>();
        if (t==-1)
        {
            const Point v={-(a-c).y,(a-c).x};
            return vector<Line>{{a,v}};
        }
        Point e=a-c; e=e/e.len()*r;
        const long double costh=r/c.dis(a),sinth=sqrt(1-costh*costh);
        const Point t1=c+e.rot(costh,-sinth),t2=c+e.rot(costh,sinth);
        return vector<Line>{{a,t1-a},{a,t2-a}};
    }

    // 两圆的公切线
    vector<Line> tangent(const Circle &a) const
    {
        const int t=relation(a);
        vector<Line> lines;
        if (t==-1 || t==4) return lines;
        if (t==1 || t==3)
        {
            const Point p=inter(a)[0],v={-(a.c-c).y,(a.c-c).x};
            lines.push_back({p,v});
        }
        const long double d=c.dis(a.c);
        const Point e=(a.c-c)/(a.c-c).len();
        if (t<=2)
        {
            const long double costh=(r-a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c+d1*a.r,v2=a.c+d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        if (t==0)
        {
            const long double costh=(r+a.r)/d,sinth=sqrt(1-costh*costh);
            const Point d1=e.rot(costh,-sinth),d2=e.rot(costh,sinth);
            const Point u1=c+d1*r,u2=c+d2*r,v1=a.c-d1*a.r,v2=a.c-d2*a.r;
            lines.push_back({u1,v1-u1}); lines.push_back({u2,v2-u2});
        }
        return lines;
    }
};

Circle circ(const Point &a,const Point &b,const Point &c)
{
    const Point v1=b-a,v2=c-a;
    const Point _v1={v1.y,-v1.x},_v2={v2.y,-v2.x};
    const Line l1={(a+b)/2,_v1},l2={(a+c)/2,_v2};
    const Point o=l1.inter(l2);
    return {o,o.dis(a)};
}

struct Minc
{
    vector<Point> p;
    vector<vector<Circle>> c;
    vector<vector<long double>> dp;
    vector<vector<size_t>> nxt;

    Minc(const vector<Point> &p):p(p),c(p.size(),vector<Circle>(p.size())),dp(p.size(),vector<long double>(p.size(),1e20)),nxt(p.size(),vector<size_t>(p.size())) {}

    long double solve(const int k)
    {
        const int n=p.size()-1;
        for (int i=1;i<=n;i++)
        {
            c[i][i]={p[i],0.0};
            for (int j=i+1;j<=n;j++)
            {
                c[i][j]=c[i][j-1];
                if (!c[i][j].is_in(p[j]))
                {
                    c[i][j]={p[j],0.0};
                    for (int k=i;k<j;k++)
                    {
                        if (!c[i][j].is_in(p[k]))
                        {
                            c[i][j]={(p[j]+p[k])/2,(p[j]-p[k]).len()/2};
                            for (int l=i;l<k;l++)
                            {
                                if (!c[i][j].is_in(p[l]))
                                {
                                    c[i][j]=circ(p[j],p[k],p[l]);
                                }
                            }
                        }
                    }
                }
            }
        }
        for (int i=1;i<=n;i++)
        {
            size_t now=n+1;
            nxt[i][i]=i+1;
            for (int j=i-1;j>=1;j--)
            {
                if (abs(c[j][i].r-c[j+1][i].r)<=eps) nxt[j][i]=nxt[j+1][i];
                else nxt[j][i]=j+1;
            }
        }
        dp[0][0]=0.0;
        for (int i=1;i<=n;i++)
        {
            for (int k=1;k<=i;k++)
            {
                for (int j=1;j<=i;j=nxt[j][i])
                {
                    dp[i][k]=min(dp[i][k],dp[j-1][k-1]+c[j][i].r);
                }
            }
        }
        return dp[n][k];
    }
};

int main()
{
    int n,k;
    long long x1;
    scanf("%d%d%lld",&n,&k,&x1);
    vector<long long> x(n+1),y(n+1);
    for (int i=1;i<=n;i++)
    {
        x[i]=i==1?x1:(y[i-1]*233811181+1)%2147483647;
        y[i]=(x[i]*233811181+1)%2147483647;
    }
    vector<Point> p(n+1);
    for (int i=1;i<=n;i++) p[i]={1.0*x[i],1.0*y[i]};
    Minc minc(p);
    printf("%.12Lf\n",minc.solve(k));
    return 0;
}

详细

Test #1:

score: 100
Accepted
time: 2ms
memory: 4368kb

input:

100 23 213

output:

1319350480.800732538686

result:

ok found '1319350480.8007326', expected '1319350480.8007326', error '0.0000000'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3704kb

input:

10 1 1060

output:

1042753143.345167686581

result:

ok found '1042753143.3451676', expected '1042753143.3451676', error '0.0000000'

Test #3:

score: 0
Accepted
time: 1ms
memory: 3648kb

input:

10 10 2373

output:

0.000000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #4:

score: 0
Accepted
time: 1ms
memory: 3716kb

input:

10 2 3396

output:

1236610536.946923031239

result:

ok found '1236610536.9469230', expected '1236610536.9469230', error '0.0000000'

Test #5:

score: 0
Accepted
time: 1ms
memory: 3640kb

input:

10 3 1998

output:

973790809.822444227524

result:

ok found '973790809.8224442', expected '973790809.8224442', error '0.0000000'

Test #6:

score: 0
Accepted
time: 1ms
memory: 3660kb

input:

10 4 562

output:

910867389.906932937622

result:

ok found '910867389.9069330', expected '910867389.9069330', error '0.0000000'

Test #7:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

10 5 6048

output:

818240814.710514981998

result:

ok found '818240814.7105150', expected '818240814.7105150', error '0.0000000'

Test #8:

score: 0
Accepted
time: 1ms
memory: 3676kb

input:

10 6 2524

output:

500106979.346776274440

result:

ok found '500106979.3467762', expected '500106979.3467762', error '0.0000000'

Test #9:

score: 0
Accepted
time: 0ms
memory: 3700kb

input:

10 7 5415

output:

559478971.432005886687

result:

ok found '559478971.4320059', expected '559478971.4320059', error '0.0000000'

Test #10:

score: 0
Accepted
time: 0ms
memory: 3708kb

input:

10 8 1438

output:

500309745.462769993639

result:

ok found '500309745.4627700', expected '500309745.4627700', error '0.0000000'

Test #11:

score: 0
Accepted
time: 1ms
memory: 3652kb

input:

10 9 3172

output:

162279748.875345173947

result:

ok found '162279748.8753452', expected '162279748.8753452', error '0.0000000'

Test #12:

score: 0
Accepted
time: 2ms
memory: 4424kb

input:

100 1 8316

output:

1320052902.152290252736

result:

ok found '1320052902.1522903', expected '1320052902.1522903', error '0.0000000'

Test #13:

score: 0
Accepted
time: 2ms
memory: 4400kb

input:

100 100 4179

output:

0.000000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #14:

score: 0
Accepted
time: 2ms
memory: 4424kb

input:

100 12 3405

output:

1329687126.130454878556

result:

ok found '1329687126.1304548', expected '1329687126.1304548', error '0.0000000'

Test #15:

score: 0
Accepted
time: 2ms
memory: 4420kb

input:

100 16 8378

output:

1338056514.484269471723

result:

ok found '1338056514.4842694', expected '1338056514.4842694', error '0.0000000'

Test #16:

score: 0
Accepted
time: 2ms
memory: 4400kb

input:

100 2 1858

output:

1310392496.143058079295

result:

ok found '1310392496.1430581', expected '1310392496.1430581', error '0.0000000'

Test #17:

score: 0
Accepted
time: 0ms
memory: 4380kb

input:

100 25 4596

output:

1440464106.622929672012

result:

ok found '1440464106.6229296', expected '1440464106.6229298', error '0.0000000'

Test #18:

score: 0
Accepted
time: 2ms
memory: 4364kb

input:

100 3 5633

output:

1399621082.614273683401

result:

ok found '1399621082.6142738', expected '1399621082.6142738', error '0.0000000'

Test #19:

score: 0
Accepted
time: 2ms
memory: 4456kb

input:

100 32 7827

output:

1342073760.532232963713

result:

ok found '1342073760.5322330', expected '1342073760.5322330', error '0.0000000'

Test #20:

score: 0
Accepted
time: 2ms
memory: 4508kb

input:

100 4 3693

output:

1339808706.709868879057

result:

ok found '1339808706.7098689', expected '1339808706.7098689', error '0.0000000'

Test #21:

score: 0
Accepted
time: 2ms
memory: 4388kb

input:

100 5 2252

output:

1394874243.505704202340

result:

ok found '1394874243.5057042', expected '1394874243.5057042', error '0.0000000'

Test #22:

score: 0
Accepted
time: 2ms
memory: 4468kb

input:

100 50 4254

output:

1322809748.405283543980

result:

ok found '1322809748.4052835', expected '1322809748.4052832', error '0.0000000'

Test #23:

score: 0
Accepted
time: 2ms
memory: 4456kb

input:

100 6 53

output:

1364441356.170098817209

result:

ok found '1364441356.1700988', expected '1364441356.1700988', error '0.0000000'

Test #24:

score: 0
Accepted
time: 2ms
memory: 4408kb

input:

100 64 4337

output:

1180754550.242283903877

result:

ok found '1180754550.2422838', expected '1180754550.2422838', error '0.0000000'

Test #25:

score: 0
Accepted
time: 1ms
memory: 4420kb

input:

100 7 5366

output:

1423557626.358679703437

result:

ok found '1423557626.3586798', expected '1423557626.3586798', error '0.0000000'

Test #26:

score: 0
Accepted
time: 0ms
memory: 4508kb

input:

100 8 8509

output:

1353289305.351995564532

result:

ok found '1353289305.3519955', expected '1353289305.3519957', error '0.0000000'

Test #27:

score: 0
Accepted
time: 2ms
memory: 4416kb

input:

100 9 1423

output:

1228887266.566166959354

result:

ok found '1228887266.5661669', expected '1228887266.5661671', error '0.0000000'

Test #28:

score: 0
Accepted
time: 2ms
memory: 4456kb

input:

100 91 4806

output:

656574218.508675504534

result:

ok found '656574218.5086755', expected '656574218.5086756', error '0.0000000'

Test #29:

score: 0
Accepted
time: 2ms
memory: 4392kb

input:

100 92 4024

output:

794693428.616224033700

result:

ok found '794693428.6162241', expected '794693428.6162238', error '0.0000000'

Test #30:

score: 0
Accepted
time: 2ms
memory: 4376kb

input:

100 93 606

output:

677641787.486312211491

result:

ok found '677641787.4863123', expected '677641787.4863122', error '0.0000000'

Test #31:

score: 0
Accepted
time: 2ms
memory: 4420kb

input:

100 94 7265

output:

686423239.262602770352

result:

ok found '686423239.2626028', expected '686423239.2626028', error '0.0000000'

Test #32:

score: 0
Accepted
time: 2ms
memory: 4404kb

input:

100 95 8469

output:

328187125.923595068714

result:

ok found '328187125.9235951', expected '328187125.9235951', error '0.0000000'

Test #33:

score: 0
Accepted
time: 1ms
memory: 4380kb

input:

100 96 1079

output:

492964787.625908539223

result:

ok found '492964787.6259086', expected '492964787.6259086', error '0.0000000'

Test #34:

score: 0
Accepted
time: 2ms
memory: 4384kb

input:

100 97 5453

output:

258652807.790656469864

result:

ok found '258652807.7906565', expected '258652807.7906564', error '0.0000000'

Test #35:

score: 0
Accepted
time: 2ms
memory: 4376kb

input:

100 98 1778

output:

159490192.118890693324

result:

ok found '159490192.1188907', expected '159490192.1188908', error '0.0000000'

Test #36:

score: 0
Accepted
time: 1ms
memory: 4384kb

input:

100 99 1825

output:

33793756.328998042445

result:

ok found '33793756.3289980', expected '33793756.3289980', error '0.0000000'

Test #37:

score: 0
Accepted
time: 73ms
memory: 73772kb

input:

1000 1 2453

output:

1486878333.285857413197

result:

ok found '1486878333.2858574', expected '1486878333.2858574', error '0.0000000'

Test #38:

score: 0
Accepted
time: 66ms
memory: 73780kb

input:

1000 1000 1798

output:

0.000000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #39:

score: 0
Accepted
time: 69ms
memory: 73844kb

input:

1000 125 43

output:

1474031969.517423305311

result:

ok found '1474031969.5174234', expected '1474031969.5174232', error '0.0000000'

Test #40:

score: 0
Accepted
time: 79ms
memory: 73860kb

input:

1000 128 8107

output:

1440374614.939197620726

result:

ok found '1440374614.9391975', expected '1440374614.9391975', error '0.0000000'

Test #41:

score: 0
Accepted
time: 77ms
memory: 73864kb

input:

1000 15 6639

output:

1491336935.553624947090

result:

ok found '1491336935.5536249', expected '1491336935.5536251', error '0.0000000'

Test #42:

score: 0
Accepted
time: 87ms
memory: 73792kb

input:

1000 16 1251

output:

1445211807.116096374812

result:

ok found '1445211807.1160963', expected '1445211807.1160963', error '0.0000000'

Test #43:

score: 0
Accepted
time: 78ms
memory: 73868kb

input:

1000 2 1303

output:

1468989868.648602263187

result:

ok found '1468989868.6486022', expected '1468989868.6486022', error '0.0000000'

Test #44:

score: 0
Accepted
time: 67ms
memory: 73788kb

input:

1000 250 4457

output:

1487674970.766015956062

result:

ok found '1487674970.7660160', expected '1487674970.7660158', error '0.0000000'

Test #45:

score: 0
Accepted
time: 67ms
memory: 73868kb

input:

1000 256 4135

output:

1474218271.514077227563

result:

ok found '1474218271.5140772', expected '1474218271.5140772', error '0.0000000'

Test #46:

score: 0
Accepted
time: 67ms
memory: 73868kb

input:

1000 3 713

output:

1482496228.990477660089

result:

ok found '1482496228.9904776', expected '1482496228.9904778', error '0.0000000'

Test #47:

score: 0
Accepted
time: 71ms
memory: 73920kb

input:

1000 31 8139

output:

1494361943.479919489240

result:

ok found '1494361943.4799194', expected '1494361943.4799194', error '0.0000000'

Test #48:

score: 0
Accepted
time: 73ms
memory: 73776kb

input:

1000 32 7916

output:

1499333171.093864779687

result:

ok found '1499333171.0938647', expected '1499333171.0938647', error '0.0000000'

Test #49:

score: 0
Accepted
time: 68ms
memory: 73788kb

input:

1000 4 2432

output:

1455826569.039410223253

result:

ok found '1455826569.0394101', expected '1455826569.0394101', error '0.0000000'

Test #50:

score: 0
Accepted
time: 68ms
memory: 73788kb

input:

1000 5 2457

output:

1452189628.196714064572

result:

ok found '1452189628.1967142', expected '1452189628.1967139', error '0.0000000'

Test #51:

score: 0
Accepted
time: 59ms
memory: 73864kb

input:

1000 500 8734

output:

1432279300.566278453683

result:

ok found '1432279300.5662785', expected '1432279300.5662787', error '0.0000000'

Test #52:

score: 0
Accepted
time: 70ms
memory: 73820kb

input:

1000 512 1866

output:

1446804508.035186520778

result:

ok found '1446804508.0351865', expected '1446804508.0351865', error '0.0000000'

Test #53:

score: 0
Accepted
time: 57ms
memory: 73772kb

input:

1000 6 1580

output:

1490178756.856603475055

result:

ok found '1490178756.8566034', expected '1490178756.8566034', error '0.0000000'

Test #54:

score: 0
Accepted
time: 74ms
memory: 73772kb

input:

1000 62 3047

output:

1482100829.646710895351

result:

ok found '1482100829.6467109', expected '1482100829.6467109', error '0.0000000'

Test #55:

score: 0
Accepted
time: 59ms
memory: 73780kb

input:

1000 64 4836

output:

1441850815.855361351511

result:

ok found '1441850815.8553615', expected '1441850815.8553615', error '0.0000000'

Test #56:

score: 0
Accepted
time: 81ms
memory: 73792kb

input:

1000 7 5269

output:

1473104490.728798354277

result:

ok found '1473104490.7287984', expected '1473104490.7287984', error '0.0000000'

Test #57:

score: 0
Accepted
time: 80ms
memory: 73748kb

input:

1000 8 2649

output:

1459133296.606623450643

result:

ok found '1459133296.6066234', expected '1459133296.6066234', error '0.0000000'

Test #58:

score: 0
Accepted
time: 62ms
memory: 73916kb

input:

1000 9 3999

output:

1482914523.380703903502

result:

ok found '1482914523.3807039', expected '1482914523.3807039', error '0.0000000'

Test #59:

score: 0
Accepted
time: 69ms
memory: 73788kb

input:

1000 991 3610

output:

295501032.478087428870

result:

ok found '295501032.4780874', expected '295501032.4780874', error '0.0000000'

Test #60:

score: 0
Accepted
time: 59ms
memory: 73852kb

input:

1000 992 3030

output:

337274092.654038187873

result:

ok found '337274092.6540382', expected '337274092.6540381', error '0.0000000'

Test #61:

score: 0
Accepted
time: 76ms
memory: 73788kb

input:

1000 993 6980

output:

222375113.105798610719

result:

ok found '222375113.1057986', expected '222375113.1057986', error '0.0000000'

Test #62:

score: 0
Accepted
time: 89ms
memory: 73916kb

input:

1000 994 7222

output:

218007091.693304088083

result:

ok found '218007091.6933041', expected '218007091.6933041', error '0.0000000'

Test #63:

score: 0
Accepted
time: 79ms
memory: 73824kb

input:

1000 995 1323

output:

169577520.223652874527

result:

ok found '169577520.2236529', expected '169577520.2236529', error '0.0000000'

Test #64:

score: 0
Accepted
time: 82ms
memory: 73748kb

input:

1000 996 2761

output:

135524743.911448715196

result:

ok found '135524743.9114487', expected '135524743.9114488', error '0.0000000'

Test #65:

score: 0
Accepted
time: 68ms
memory: 73752kb

input:

1000 997 4946

output:

87043806.422792088611

result:

ok found '87043806.4227921', expected '87043806.4227921', error '0.0000000'

Test #66:

score: 0
Accepted
time: 63ms
memory: 73772kb

input:

1000 998 842

output:

24094936.551191687944

result:

ok found '24094936.5511917', expected '24094936.5511917', error '0.0000000'

Test #67:

score: 0
Accepted
time: 64ms
memory: 73784kb

input:

1000 999 5078

output:

4597519.064655034141

result:

ok found '4597519.0646550', expected '4597519.0646550', error '0.0000000'

Test #68:

score: 0
Accepted
time: 312ms
memory: 284980kb

input:

2000 1 2633

output:

1502350354.499526989530

result:

ok found '1502350354.4995270', expected '1502350354.4995270', error '0.0000000'

Test #69:

score: 0
Accepted
time: 272ms
memory: 285032kb

input:

2000 1000 6248

output:

1469507093.404211048968

result:

ok found '1469507093.4042110', expected '1469507093.4042110', error '0.0000000'

Test #70:

score: 0
Accepted
time: 289ms
memory: 285060kb

input:

2000 1024 2507

output:

1448066815.318478936562

result:

ok found '1448066815.3184788', expected '1448066815.3184788', error '0.0000000'

Test #71:

score: 0
Accepted
time: 310ms
memory: 285004kb

input:

2000 125 3002

output:

1476846542.031891053310

result:

ok found '1476846542.0318911', expected '1476846542.0318909', error '0.0000000'

Test #72:

score: 0
Accepted
time: 354ms
memory: 285020kb

input:

2000 128 5622

output:

1464957942.640037996694

result:

ok found '1464957942.6400380', expected '1464957942.6400380', error '0.0000000'

Test #73:

score: 0
Accepted
time: 303ms
memory: 284984kb

input:

2000 15 5891

output:

1490626300.155867164955

result:

ok found '1490626300.1558671', expected '1490626300.1558671', error '0.0000000'

Test #74:

score: 0
Accepted
time: 265ms
memory: 284960kb

input:

2000 16 1750

output:

1504400245.414980667643

result:

ok found '1504400245.4149806', expected '1504400245.4149806', error '0.0000000'

Test #75:

score: 0
Accepted
time: 321ms
memory: 284964kb

input:

2000 1990 6698

output:

313951388.404651154153

result:

ok found '313951388.4046512', expected '313951388.4046511', error '0.0000000'

Test #76:

score: 0
Accepted
time: 289ms
memory: 285108kb

input:

2000 1991 80

output:

248800118.679306058533

result:

ok found '248800118.6793061', expected '248800118.6793060', error '0.0000000'

Test #77:

score: 0
Accepted
time: 332ms
memory: 285116kb

input:

2000 1992 4802

output:

257156356.521679496858

result:

ok found '257156356.5216795', expected '257156356.5216795', error '0.0000000'

Test #78:

score: 0
Accepted
time: 333ms
memory: 284948kb

input:

2000 1993 169

output:

197117968.448224813939

result:

ok found '197117968.4482248', expected '197117968.4482248', error '0.0000000'

Test #79:

score: 0
Accepted
time: 353ms
memory: 285112kb

input:

2000 1994 6269

output:

109695555.808850097419

result:

ok found '109695555.8088501', expected '109695555.8088501', error '0.0000000'

Test #80:

score: 0
Accepted
time: 341ms
memory: 284944kb

input:

2000 1995 3452

output:

179563229.396784273064

result:

ok found '179563229.3967843', expected '179563229.3967843', error '0.0000000'

Test #81:

score: 0
Accepted
time: 363ms
memory: 285100kb

input:

2000 1996 2191

output:

84783513.645589572930

result:

ok found '84783513.6455896', expected '84783513.6455896', error '0.0000000'

Test #82:

score: 0
Accepted
time: 329ms
memory: 284964kb

input:

2000 1997 7803

output:

53635859.339989974993

result:

ok found '53635859.3399900', expected '53635859.3399900', error '0.0000000'

Test #83:

score: 0
Accepted
time: 317ms
memory: 285024kb

input:

2000 1998 8341

output:

33466185.814944227926

result:

ok found '33466185.8149442', expected '33466185.8149442', error '0.0000000'

Test #84:

score: 0
Accepted
time: 312ms
memory: 285116kb

input:

2000 1999 6773

output:

2608075.465283261316

result:

ok found '2608075.4652833', expected '2608075.4652833', error '0.0000000'

Test #85:

score: 0
Accepted
time: 287ms
memory: 285028kb

input:

2000 2 4496

output:

1484602254.131001193775

result:

ok found '1484602254.1310012', expected '1484602254.1310012', error '0.0000000'

Test #86:

score: 0
Accepted
time: 307ms
memory: 285072kb

input:

2000 2000 5384

output:

0.000000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #87:

score: 0
Accepted
time: 341ms
memory: 285116kb

input:

2000 250 1029

output:

1465117434.063100559404

result:

ok found '1465117434.0631006', expected '1465117434.0631006', error '0.0000000'

Test #88:

score: 0
Accepted
time: 298ms
memory: 284948kb

input:

2000 256 5220

output:

1481878242.218473969959

result:

ok found '1481878242.2184739', expected '1481878242.2184739', error '0.0000000'

Test #89:

score: 0
Accepted
time: 318ms
memory: 285120kb

input:

2000 3 8403

output:

1489320436.431853223010

result:

ok found '1489320436.4318533', expected '1489320436.4318533', error '0.0000000'

Test #90:

score: 0
Accepted
time: 279ms
memory: 285048kb

input:

2000 31 6950

output:

1477330995.225131030078

result:

ok found '1477330995.2251310', expected '1477330995.2251310', error '0.0000000'

Test #91:

score: 0
Accepted
time: 318ms
memory: 285040kb

input:

2000 32 3632

output:

1496222504.649006322259

result:

ok found '1496222504.6490064', expected '1496222504.6490064', error '0.0000000'

Test #92:

score: 0
Accepted
time: 301ms
memory: 285068kb

input:

2000 4 2987

output:

1477889007.505459023640

result:

ok found '1477889007.5054591', expected '1477889007.5054593', error '0.0000000'

Test #93:

score: 0
Accepted
time: 317ms
memory: 285056kb

input:

2000 5 2580

output:

1485468254.737495114328

result:

ok found '1485468254.7374952', expected '1485468254.7374952', error '0.0000000'

Test #94:

score: 0
Accepted
time: 282ms
memory: 284964kb

input:

2000 500 6270

output:

1475788271.027598771732

result:

ok found '1475788271.0275989', expected '1475788271.0275989', error '0.0000000'

Test #95:

score: 0
Accepted
time: 332ms
memory: 284988kb

input:

2000 512 1864

output:

1470340599.474985653185

result:

ok found '1470340599.4749856', expected '1470340599.4749856', error '0.0000000'

Test #96:

score: 0
Accepted
time: 327ms
memory: 285036kb

input:

2000 6 8814

output:

1497075189.013496002881

result:

ok found '1497075189.0134959', expected '1497075189.0134962', error '0.0000000'

Test #97:

score: 0
Accepted
time: 332ms
memory: 285040kb

input:

2000 62 4139

output:

1490927650.973211951787

result:

ok found '1490927650.9732120', expected '1490927650.9732120', error '0.0000000'

Test #98:

score: 0
Accepted
time: 289ms
memory: 285004kb

input:

2000 64 7700

output:

1494910912.613783401204

result:

ok found '1494910912.6137834', expected '1494910912.6137834', error '0.0000000'

Test #99:

score: 0
Accepted
time: 338ms
memory: 285120kb

input:

2000 7 8304

output:

1488325857.821989718243

result:

ok found '1488325857.8219898', expected '1488325857.8219898', error '0.0000000'

Test #100:

score: 0
Accepted
time: 305ms
memory: 284988kb

input:

2000 8 7774

output:

1507136513.171559004928

result:

ok found '1507136513.1715591', expected '1507136513.1715591', error '0.0000000'

Test #101:

score: 0
Accepted
time: 301ms
memory: 284948kb

input:

2000 9 2618

output:

1492019659.037316270755

result:

ok found '1492019659.0373163', expected '1492019659.0373163', error '0.0000000'

Test #102:

score: 0
Accepted
time: 15ms
memory: 21436kb

input:

500 1 7674

output:

1463672939.781249850057

result:

ok found '1463672939.7812498', expected '1463672939.7812500', error '0.0000000'

Test #103:

score: 0
Accepted
time: 21ms
memory: 21392kb

input:

500 125 1629

output:

1420736329.083827407681

result:

ok found '1420736329.0838275', expected '1420736329.0838273', error '0.0000000'

Test #104:

score: 0
Accepted
time: 14ms
memory: 21476kb

input:

500 15 7376

output:

1465677415.506387916859

result:

ok found '1465677415.5063879', expected '1465677415.5063879', error '0.0000000'

Test #105:

score: 0
Accepted
time: 13ms
memory: 21392kb

input:

500 250 5627

output:

1411074935.882357951370

result:

ok found '1411074935.8823578', expected '1411074935.8823581', error '0.0000000'

Test #106:

score: 0
Accepted
time: 23ms
memory: 21412kb

input:

500 3 2245

output:

1437079231.540981166763

result:

ok found '1437079231.5409811', expected '1437079231.5409811', error '0.0000000'

Test #107:

score: 0
Accepted
time: 12ms
memory: 21484kb

input:

500 31 8072

output:

1487957912.031461420236

result:

ok found '1487957912.0314615', expected '1487957912.0314612', error '0.0000000'

Test #108:

score: 0
Accepted
time: 16ms
memory: 21412kb

input:

500 62 2415

output:

1454787477.649377375492

result:

ok found '1454787477.6493773', expected '1454787477.6493773', error '0.0000000'

Test #109:

score: 0
Accepted
time: 25ms
memory: 21520kb

input:

500 7 1586

output:

1459900114.704660679912

result:

ok found '1459900114.7046607', expected '1459900114.7046607', error '0.0000000'