QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#110412#6518. Not Another Linear Algebra ProblemmaroonrkAC ✓855ms354932kbC++2024.3kb2023-06-01 22:01:302023-06-01 22:01:31

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-06-01 22:01:31]
  • 评测
  • 测评结果:AC
  • 用时:855ms
  • 内存:354932kb
  • [2023-06-01 22:01:30]
  • 提交

answer

#ifndef LOCAL
#pragma GCC optimize ("Ofast")
#pragma GCC optimize ("unroll-loops")
#endif

#include <bits/stdc++.h>
using namespace std;

using ll=long long;
#define int ll

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif

template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

using pi=pair<int,int>;
using vi=vc<int>;

template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
	return os<<"{"<<p.a<<","<<p.b<<"}";
}

template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
	os<<"{";
	for(auto e:v)os<<e<<",";
	return os<<"}";
}

#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
	os<<t<<" ";
	dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif

using uint=unsigned;
using ull=unsigned long long;

template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
	return os<<vc<t>(all(a));
}

template<int i,class T>
void print_tuple(ostream&,const T&){
}

template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
	if(i)os<<",";
	os<<get<i>(t);
	print_tuple<i+1,T,Args...>(os,t);
}

template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
	os<<"{";
	print_tuple<0,tuple<Args...>,Args...>(os,t);
	return os<<"}";
}

ll read(){
	ll i;
	cin>>i;
	return i;
}

vi readvi(int n,int off=0){
	vi v(n);
	rep(i,n)v[i]=read()+off;
	return v;
}

pi readpi(int off=0){
	int a,b;cin>>a>>b;
	return pi(a+off,b+off);
}

template<class t>
void print_single(t x,int suc=1){
	cout<<x;
	if(suc==1)
		cout<<"\n";
	if(suc==2)
		cout<<" ";
}

template<class t,class u>
void print_single(const pair<t,u>&p,int suc=1){
	print_single(p.a,2);
	print_single(p.b,suc);
}

template<class T>
void print_single(const vector<T>&v,int suc=1){
	rep(i,v.size())
		print_single(v[i],i==int(v.size())-1?suc:2);
}

template<class T>
void print_offset(const vector<T>&v,ll off,int suc=1){
	rep(i,v.size())
		print_single(v[i]+off,i==int(v.size())-1?suc:2);
}

template<class T,size_t N>
void print_single(const array<T,N>&v,int suc=1){
	rep(i,N)
		print_single(v[i],i==int(N)-1?suc:2);
}

template<class T>
void print(const T&t){
	print_single(t);
}

template<class T,class ...Args>
void print(const T&t,const Args&...args){
	print_single(t,2);
	print(args...);
}

string readString(){
	string s;
	cin>>s;
	return s;
}

template<class T>
T sq(const T& t){
	return t*t;
}

void YES(bool ex=true){
	cout<<"YES\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void NO(bool ex=true){
	cout<<"NO\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void Yes(bool ex=true){
	cout<<"Yes\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void No(bool ex=true){
	cout<<"No\n";
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
//#define CAPITAL
/*
void yes(bool ex=true){
	#ifdef CAPITAL
	cout<<"YES"<<"\n";
	#else
	cout<<"Yes"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void no(bool ex=true){
	#ifdef CAPITAL
	cout<<"NO"<<"\n";
	#else
	cout<<"No"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}*/
void possible(bool ex=true){
	#ifdef CAPITAL
	cout<<"POSSIBLE"<<"\n";
	#else
	cout<<"Possible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}
void impossible(bool ex=true){
	#ifdef CAPITAL
	cout<<"IMPOSSIBLE"<<"\n";
	#else
	cout<<"Impossible"<<"\n";
	#endif
	if(ex)exit(0);
	#ifdef LOCAL
	cout.flush();
	#endif
}

constexpr ll ten(int n){
	return n==0?1:ten(n-1)*10;
}

const ll infLL=LLONG_MAX/3;

#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif

int topbit(signed t){
	return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
	return t==0?-1:63-__builtin_clzll(t);
}
int topbit(ull t){
	return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
	return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
	return a==0?64:__builtin_ctzll(a);
}
int botbit(ull a){
	return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
	return __builtin_popcount(t);
}
int popcount(ll t){
	return __builtin_popcountll(t);
}
int popcount(ull t){
	return __builtin_popcountll(t);
}
int bitparity(ll t){
	return __builtin_parityll(t);
}
bool ispow2(int i){
	return i&&(i&-i)==i;
}
ll mask(int i){
	return (ll(1)<<i)-1;
}
ull umask(int i){
	return (ull(1)<<i)-1;
}
ll minp2(ll n){
	if(n<=1)return 1;
	else return ll(1)<<(topbit(n-1)+1);
}

bool inc(int a,int b,int c){
	return a<=b&&b<=c;
}

template<class t> void mkuni(vc<t>&v){
	sort(all(v));
	v.erase(unique(all(v)),v.ed);
}

ll rand_int(ll l, ll r) { //[l, r]
	//#ifdef LOCAL
	static mt19937_64 gen;
	/*#else
	static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
	#endif*/
	return uniform_int_distribution<ll>(l, r)(gen);
}

ll rand_int(ll k){ //[0,k)
	return rand_int(0,k-1);
}

template<class t>
void myshuffle(vc<t>&a){
	rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}

template<class t>
int lwb(const vc<t>&v,const t&a){
	return lower_bound(all(v),a)-v.bg;
}
template<class t>
bool bis(const vc<t>&v,const t&a){
	return binary_search(all(v),a);
}

vvc<int> readGraph(int n,int m){
	vvc<int> g(n);
	rep(i,m){
		int a,b;
		cin>>a>>b;
		//sc.read(a,b);
		a--;b--;
		g[a].pb(b);
		g[b].pb(a);
	}
	return g;
}

vvc<int> readTree(int n){
	return readGraph(n,n-1);
}

vc<ll> presum(const vi&a){
	vc<ll> s(si(a)+1);
	rep(i,si(a))s[i+1]=s[i]+a[i];
	return s;
}
//BIT で数列を管理するときに使う (CF850C)
template<class t>
vc<t> predif(vc<t> a){
	gnr(i,1,si(a))a[i]-=a[i-1];
	return a;
}
template<class t>
vvc<ll> imos(const vvc<t>&a){
	int n=si(a),m=si(a[0]);
	vvc<ll> b(n+1,vc<ll>(m+1));
	rep(i,n)rep(j,m)
		b[i+1][j+1]=b[i+1][j]+b[i][j+1]-b[i][j]+a[i][j];
	return b;
}

//verify してないや
void transvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void transvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[j][i]=a[i][j];
	}
	a.swap(b);
	transvvc(n,m,args...);
}
//CF854E
void rotvvc(int&n,int&m){
	swap(n,m);
}
template<class t,class... Args>
void rotvvc(int&n,int&m,vvc<t>&a,Args&...args){
	assert(si(a)==n);
	vvc<t> b(m,vi(n));
	rep(i,n){
		assert(si(a[i])==m);
		rep(j,m)b[m-1-j][i]=a[i][j];
	}
	a.swap(b);
	rotvvc(n,m,args...);
}

//ソートして i 番目が idx[i]
//CF850C
template<class t>
vi sortidx(const vc<t>&a){
	int n=si(a);
	vi idx(n);iota(all(idx),0);
	sort(all(idx),[&](int i,int j){return a[i]<a[j];});
	return idx;
}
//vs[i]=a[idx[i]]
//例えば sortidx で得た idx を使えば単にソート列になって返ってくる
//CF850C
template<class t>
vc<t> a_idx(const vc<t>&a,const vi&idx){
	int n=si(a);
	assert(si(idx)==n);
	vc<t> vs(n);
	rep(i,n)vs[i]=a[idx[i]];
	return vs;
}
//CF850C
vi invperm(const vi&p){
	int n=si(p);
	vi q(n);
	rep(i,n)q[p[i]]=i;
	return q;
}

template<class t,class s=t>
s SUM(const vc<t>&a){
	return accumulate(all(a),s(0));
}

template<class t>
t MAX(const vc<t>&a){
	return *max_element(all(a));
}

template<class t>
t MIN(const vc<t>&a){
	return *min_element(all(a));
}

template<class t>
pair<t,int> MINi(const vc<t>&a){
	auto itr=min_element(all(a));
	return mp(*itr,itr-a.bg);
}

template<class t,class u>
pair<t,u> operator+(const pair<t,u>&a,const pair<t,u>&b){
	return mp(a.a+b.a,a.b+b.b);
}

vi vid(int n){
	vi res(n);iota(all(res),0);
	return res;
}

template<class S>
S getrev(S s){
	reverse(all(s));
	return s;
}

pi operator+(pi a,pi b){return pi(a.a+b.a,a.b+b.b);}

template<class t>
t gpp(vc<t>&vs){
	assert(si(vs));
	t res=move(vs.back());
	vs.pop_back();
	return res;
}

//mint107 は verify してねえ
#define DYNAMIC_MOD

struct modinfo{uint mod,root;
#ifdef DYNAMIC_MOD
constexpr modinfo(uint m,uint r):mod(m),root(r),im(0){set_mod(m);}
ull im;
constexpr void set_mod(uint m){
	mod=m;
	im=ull(-1)/m+1;
}
uint product(uint a,uint b)const{
	ull z=ull(a)*b;
	uint x=((unsigned __int128)z*im)>>64;
	uint v=uint(z)-x*mod;
	return v<mod?v:v+mod;
}
#endif
};
template<modinfo const&ref>
struct modular{
	static constexpr uint const &mod=ref.mod;
	static modular root(){return modular(ref.root);}
	uint v;
	//modular(initializer_list<uint>ls):v(*ls.bg){}
	modular(ll vv=0){s(vv%mod+mod);}
	modular& s(uint vv){
		v=vv<mod?vv:vv-mod;
		return *this;
	}
	modular operator-()const{return modular()-*this;}
	modular& operator+=(const modular&rhs){return s(v+rhs.v);}
	modular&operator-=(const modular&rhs){return s(v+mod-rhs.v);}
	modular&operator*=(const modular&rhs){
		#ifndef DYNAMIC_MOD
		v=ull(v)*rhs.v%mod;
		#else
		v=ref.product(v,rhs.v);
		#endif
		return *this;
	}
	modular&operator/=(const modular&rhs){return *this*=rhs.inv();}
	modular operator+(const modular&rhs)const{return modular(*this)+=rhs;}
	modular operator-(const modular&rhs)const{return modular(*this)-=rhs;}
	modular operator*(const modular&rhs)const{return modular(*this)*=rhs;}
	modular operator/(const modular&rhs)const{return modular(*this)/=rhs;}
	modular pow(ll n)const{
		if(n<0)return inv().pow(-n);
		modular res(1),x(*this);
		while(n){
			if(n&1)res*=x;
			x*=x;
			n>>=1;
		}
		return res;
	}
	modular inv()const{return pow(mod-2);}
	/*modular inv()const{
		int x,y;
		int g=extgcd<ll>(v,mod,x,y);
		assert(g==1);
		if(x<0)x+=mod;
		return modular(x);
	}*/
	friend modular operator+(ll x,const modular&y){
		return modular(x)+y;
	}
	friend modular operator-(ll x,const modular&y){
		return modular(x)-y;
	}
	friend modular operator*(ll x,const modular&y){
		return modular(x)*y;
	}
	friend modular operator/(ll x,const modular&y){
		return modular(x)/y;
	}
	friend ostream& operator<<(ostream&os,const modular&m){
		return os<<m.v;
	}
	friend istream& operator>>(istream&is,modular&m){
		ll x;is>>x;
		m=modular(x);
		return is;
	}
	bool operator<(const modular&r)const{return v<r.v;}
	bool operator==(const modular&r)const{return v==r.v;}
	bool operator!=(const modular&r)const{return v!=r.v;}
	explicit operator bool()const{
		return v;
	}
};

//#define USE_GOOD_MOD

//size of input must be a power of 2
//output of forward fmt is bit-reversed
//output elements are in the range [0,mod*4)
//input of inverse fmt should be bit-reversed
template<class mint>
void inplace_fmt(const int n,mint*const f,bool inv){
	static constexpr uint mod=mint::mod;
	static constexpr uint mod2=mod*2;
	static constexpr int L=30;
	static mint g[L],ig[L],p2[L];
	if(g[0].v==0){
		rep(i,L){
			mint w=-mint::root().pow(((mod-1)>>(i+2))*3);
			g[i]=w;
			ig[i]=w.inv();
			p2[i]=mint(1<<i).inv();
		}
	}
	if(!inv){
		int b=n;
		if(b>>=1){//input:[0,mod)
			rep(i,b){
				uint x=f[i+b].v;
				f[i+b].v=f[i].v+mod-x;
				f[i].v+=x;
			}
		}
		if(b>>=1){//input:[0,mod*2)
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
		while(b){
			if(b>>=1){//input:[0,mod*3)
				mint p=1;
				for(int i=0,k=0;i<n;i+=b*2){
					rng(j,i,i+b){
						uint x=(f[j+b]*p).v;
						f[j+b].v=f[j].v+mod-x;
						f[j].v+=x;
					}
					p*=g[__builtin_ctz(++k)];
				}
			}
			if(b>>=1){//input:[0,mod*4)
				mint p=1;
				for(int i=0,k=0;i<n;i+=b*2){
					rng(j,i,i+b){
						uint x=(f[j+b]*p).v;
						f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
						f[j+b].v=f[j].v+mod-x;
						f[j].v+=x;
					}
					p*=g[__builtin_ctz(++k)];
				}
			}
		}
	}else{
		int b=1;
		if(b<n/2){//input:[0,mod)
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					ull x=f[j].v+mod-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j+b].v=x*p.v%mod;
				}
				p*=ig[__builtin_ctz(++k)];
			}
			b<<=1;
		}
		for(;b<n/2;b<<=1){
			mint p=1;
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b/2){//input:[0,mod*2)
					ull x=f[j].v+mod2-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2;
					f[j+b].v=x*p.v%mod;
				}
				rng(j,i+b/2,i+b){//input:[0,mod)
					ull x=f[j].v+mod-f[j+b].v;
					f[j].v+=f[j+b].v;
					f[j+b].v=x*p.v%mod;
				}
				p*=ig[__builtin_ctz(++k)];
			}
		}
		if(b<n){//input:[0,mod*2)
			rep(i,b){
				uint x=f[i+b].v;
				f[i+b].v=f[i].v+mod2-x;
				f[i].v+=x;
			}
		}
		mint z=p2[__lg(n)];
		rep(i,n)f[i]*=z;
	}
}

template<class mint>
void inplace_fmt(vector<mint>&f,bool inv){
	inplace_fmt(si(f),f.data(),inv);
}

//size of input must be a power of 2
//output elements are in the range [0,mod*4)
template<class mint>
void half_fmt(const int n,mint*const f){
	static constexpr uint mod=mint::mod;
	static constexpr uint mod2=mod*2;
	static const int L=30;
	static mint g[L],h[L];
	if(g[0].v==0){
		rep(i,L){
			g[i]=-mint::root().pow(((mod-1)>>(i+2))*3);
			h[i]=mint::root().pow((mod-1)>>(i+2));
		}
	}
	int b=n;
	int lv=0;
	if(b>>=1){//input:[0,mod)
		mint p=h[lv++];
		for(int i=0,k=0;i<n;i+=b*2){
			rng(j,i,i+b){
				uint x=(f[j+b]*p).v;
				f[j+b].v=f[j].v+mod-x;
				f[j].v+=x;
			}
			p*=g[__builtin_ctz(++k)];
		}
	}
	if(b>>=1){//input:[0,mod*2)
		mint p=h[lv++];
		for(int i=0,k=0;i<n;i+=b*2){
			rng(j,i,i+b){
				uint x=(f[j+b]*p).v;
				f[j+b].v=f[j].v+mod-x;
				f[j].v+=x;
			}
			p*=g[__builtin_ctz(++k)];
		}
	}
	while(b){
		if(b>>=1){//input:[0,mod*3)
			mint p=h[lv++];
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
		if(b>>=1){//input:[0,mod*4)
			mint p=h[lv++];
			for(int i=0,k=0;i<n;i+=b*2){
				rng(j,i,i+b){
					uint x=(f[j+b]*p).v;
					f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
					f[j+b].v=f[j].v+mod-x;
					f[j].v+=x;
				}
				p*=g[__builtin_ctz(++k)];
			}
		}
	}
}

template<class mint>
void half_fmt(vector<mint>&f){
	half_fmt(si(f),f.data());
}

#ifdef USE_GOOD_MOD

template<class mint>
vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){
	int n=si(x)+si(y)-1;
	int s=1;
	while(s<n)s*=2;
	x.resize(s);inplace_fmt(x,false);
	if(!same){
		static vc<mint> z;
		z.clear();z.resize(s);
		rep(i,si(y))z[i]=y[i];
		inplace_fmt(z,false);
		rep(i,s)x[i]*=z[i];
	}else{
		rep(i,s)x[i]*=x[i];
	}
	inplace_fmt(x,true);x.resize(n);
	return x;
}
template<class mint>
vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){
	int s=si(x);
	assert(ispow2(s));
	assert(si(y));
	x.resize(s);inplace_fmt(x,false);
	if(!same){
		static vc<mint> z;
		z.clear();z.resize(s);
		rep(i,si(y))z[i]=y[i];
		inplace_fmt(z,false);
		rep(i,s)x[i]*=z[i];
	}else{
		rep(i,s)x[i]*=x[i];
	}
	inplace_fmt(x,true);
	return x;
}

#else

//59501818244292734739283969-1=5.95*10^25 までの値を正しく計算
//最終的な列の大きさが 2^24 までなら動く
//最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?)
//VERIFY: yosupo
//Yukicoder No980 (same=true)
namespace arbitrary_convolution{
	constexpr modinfo base0{167772161,3};//2^25 * 5 + 1
	constexpr modinfo base1{469762049,3};//2^26 * 7 + 1
	constexpr modinfo base2{754974721,11};//2^24 * 45 + 1
	//extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
	//extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
	//extern constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1
	using mint0=modular<base0>;
	using mint1=modular<base1>;
	using mint2=modular<base2>;
	template<class t,class mint>
	vc<t> sub(const vc<mint>&x,const vc<mint>&y,bool same=false){
		int n=si(x)+si(y)-1;
		int s=1;
		while(s<n)s*=2;
		vc<t> z(s);rep(i,si(x))z[i]=x[i].v;
		inplace_fmt(z,false);
		if(!same){
			vc<t> w(s);rep(i,si(y))w[i]=y[i].v;
			inplace_fmt(w,false);
			rep(i,s)z[i]*=w[i];
		}else{
			rep(i,s)z[i]*=z[i];
		}
		inplace_fmt(z,true);z.resize(n);
		return z;
	}
	template<class mint>
	vc<mint> multiply(const vc<mint>&x,const vc<mint>&y,bool same=false){
		auto d0=sub<mint0>(x,y,same);
		auto d1=sub<mint1>(x,y,same);
		auto d2=sub<mint2>(x,y,same);
		int n=si(d0);
		vc<mint> res(n);
		static const mint1 r01=mint1(mint0::mod).inv();
		static const mint2 r02=mint2(mint0::mod).inv();
		static const mint2 r12=mint2(mint1::mod).inv();
		static const mint2 r02r12=r02*r12;
		static const mint w1=mint(mint0::mod);
		static const mint w2=w1*mint(mint1::mod);
		rep(i,n){
			ull a=d0[i].v;
			ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod;
			ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod;
			res[i].v=(a+b*w1.v+c*w2.v)%mint::mod;
		}
		return res;
	}
	template<class t,class mint>
	vc<t>&sub_givenlength(const vc<mint>&x,const vc<mint>&y,bool same=false){
		int s=si(x);
		assert(ispow2(s));
		assert(si(y)==s);
		static vc<t> z;
		z.clear();z.resize(s);
		rep(i,si(x))z[i]=x[i].v;
		inplace_fmt(z,false);
		if(!same){
			static vc<t> w;
			w.clear();w.resize(s);
			rep(i,si(y))w[i]=y[i].v;
			inplace_fmt(w,false);
			rep(i,s)z[i]*=w[i];
		}else{
			rep(i,s)z[i]*=z[i];
		}
		inplace_fmt(z,true);
		return z;
	}
	template<class mint>
	vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){
		auto&d0=sub_givenlength<mint0>(x,y,same);
		auto&d1=sub_givenlength<mint1>(x,y,same);
		auto&d2=sub_givenlength<mint2>(x,y,same);
		int n=si(d0);
		x.resize(n);
		static const mint1 r01=mint1(mint0::mod).inv();
		static const mint2 r02=mint2(mint0::mod).inv();
		static const mint2 r12=mint2(mint1::mod).inv();
		static const mint2 r02r12=r02*r12;
		static const mint w1=mint(mint0::mod);
		static const mint w2=w1*mint(mint1::mod);
		rep(i,n){
			ull a=d0[i].v;
			ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod;
			ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod;
			x[i].v=(a+b*w1.v+c*w2.v)%mint::mod;
		}
		return x;
	}
}
using arbitrary_convolution::multiply;
using arbitrary_convolution::multiply_givenlength;

#endif

//UTPC2021 C
namespace integer_convolution{
	extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
	extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
	//extern constexpr modinfo base0{469762049,3};//2^26 * 7 + 1
	//extern constexpr modinfo base1{754974721,11};//2^24 * 45 + 1
	using mint0=modular<base0>;
	using mint1=modular<base1>;
	template<class t>
	vc<t> sub(const vi&x,const vi&y,bool same=false){
		int n=si(x)+si(y)-1;
		int s=1;
		while(s<n)s*=2;
		vc<t> z(s);rep(i,si(x))z[i]=x[i];
		inplace_fmt(z,false);
		if(!same){
			vc<t> w(s);rep(i,si(y))w[i]=y[i];
			inplace_fmt(w,false);
			rep(i,s)z[i]*=w[i];
		}else{
			rep(i,s)z[i]*=z[i];
		}
		inplace_fmt(z,true);z.resize(n);
		return z;
	}
	vi multiply(const vi&x,const vi&y,bool same=false){
		auto d0=sub<mint0>(x,y,same);
		auto d1=sub<mint1>(x,y,same);
		const mint1 r=mint1(mint0::mod).inv();
		const ll v=ll(mint0::mod)*mint1::mod;
		int n=si(d0);
		vi res(n);
		rep(i,n){
			res[i]=d0[i].v+(r*(d1[i]-d0[i].v)).v*(ull)mint0::mod;
			if(res[i]>v/2)res[i]-=v;
		}
		return res;
	}
}

//最大で 1<<mx のサイズの fft が登場!
template<class mint>
vc<mint> large_convolution(const vc<mint>&a,const vc<mint>&b,int mx){
	int n=si(a),m=si(b);
	vc<mint> c(n+m-1);
	int len=1<<(mx-1);
	for(int i=0;i<n;i+=len){
		for(int j=0;j<n;j+=len){
			int x=min(len,n-i),y=min(len,m-j);
			auto d=multiply(vc<mint>(a.bg+i,a.bg+i+x),vc<mint>(b.bg+j,b.bg+j+y));
			rep(k,si(d))
				c[i+j+k]+=d[k];
		}
	}
	return c;
}

//input A: N 次,B ?,M
//output D: M 次多項式
//C を M 次多項式として
//[x^N] A*B*C = [x^M] D*C
//となるような D を返す
//CF796F
template<class mint>
vc<mint> transpose_advance(const vc<mint>&a,const vc<mint>&b,int m){
	int n=si(a)-1;
	auto d=multiply(a,b);
	vc<mint> res(m+1);
	if(n>=m){
		rep(i,m+1)res[i]=d[i+n-m];
	}else{
		rng(i,m-n,m+1)res[i]=d[i+n-m];
	}
	return res;
}

//Yukicoder 2166
template<class mint>
void chmult(vc<mint>&x,const vc<mint>&y,int s){
	x=multiply(move(x),y);
	x.resize(s);
}

#ifndef DYNAMIC_MOD
extern constexpr modinfo base{998244353,3};
//extern constexpr modinfo base{1000000007,0};
//extern constexpr modinfo base{2147483579,0};//2^31 未満の最大の安全素数
//modinfo base{1,0};
#ifdef USE_GOOD_MOD
static_assert(base.mod==998244353);
#endif
#else
modinfo base(1,0);
extern constexpr modinfo base107(1000000007,0);
using mint107=modular<base107>;
#endif
using mint=modular<base>;

mint parity(int i){
	return i%2==0?1:-1;
}

#ifdef LOCAL
const int vmax=10010;
#else
const int vmax=ten(7)+10;
#endif

mint q,pq[vmax],pqinv[vmax],qfact[vmax],qfinv[vmax];
int uso[vmax];
//あらゆるものが q で作られている
//qfact[k]=(q-1)(q^2-1)...(q^k-1)
void initqfact(){
	pq[0]=1;
	rep(i,vmax-1)pq[i+1]=pq[i]*q;
	pqinv[vmax-1]=pq[vmax-1].inv();
	per(i,vmax-1)pqinv[i]=pqinv[i+1]*q;
	qfact[0]=1;
	rng(n,1,vmax){
		uso[n]=uso[n-1];
		mint v=pq[n]-1;
		if(v==0){
			uso[n]++;
			v=1;
		}
		qfact[n]=qfact[n-1]*v;// /(q-1)
	}
	qfinv[vmax-1]=qfact[vmax-1].inv();
	gnr(n,1,vmax){
		mint v=pq[n]-1;
		if(v==0)v=1;
		qfinv[n-1]=qfinv[n]*v;// /(q-1)
	}
}
//2^n の部分空間であって,ランク k のものの個数
//ABC278H
mint subspace(int n,int k){
	if(n<k)return 0;
	return qfact[n]*qfinv[k]*qfinv[n-k];
}
//input[i]: i 次元ベクトル空間を固定したとする.
//そこに入るベクトルの集合であって何らかの条件を満たすもの,の個数
//output[i]: 上と同じだが,部分集合が i 次元をちゃんと span する,の個数
//ABC278H
vc<mint> getspanning(vc<mint> a){
	int n=si(a);
	rep(i,n)a[i]*=qfinv[i];
	vc<mint> w(n);
	rep(i,n)w[i]=parity(i)*q.pow(i*(i-1)/2)*qfinv[i];
	auto b=multiply(move(a),w);
	b.resize(n);
	rep(i,n)b[i]*=qfact[i];
	return b;
}

struct pow_table{
	const int B;
	vc<mint> small,large;
	pow_table(mint w):B(sqrtl(mint::mod)+1),small(B+1),large(B+1){
		small[0]=1;
		rep(i,B)small[i+1]=small[i]*w;
		large[0]=1;
		rep(i,B)large[i+1]=large[i]*small[B];
	}
	mint ask(int i){
		assert(inc(0,i,mint::mod));
		return small[i%B]*large[i/B];
	}
};

void slv(){
	int n,qv;cin>>n>>qv;
	base.set_mod(read());
	q=qv;
	initqfact();
	assert(qfinv[vmax-1]);
	
	/*vc<mint> c(n+1);
	rep(i,n+1)c[i]=q.pow((n-1+n-i)*i/2);
	
	{
		auto d=c;
		rep(i,n+1)d[i]*=pq[i];
		vc<mint> e(n+1);
		e[0]=1;
		rep(i,n)e[i+1]=c[i]*pq[n];
		assert(d==e);
	}*/
	
	vc<mint> z(n+1);
	//rep(i,n+1)z[i]=parity(i)*q.pow(i*(i-1)/2)*qfinv[i];
	{
		mint cur=1;
		rep(i,n+1){
			z[i]=parity(i)*cur;
			if(uso[n-i]+uso[i]==uso[n]){
				z[i]*=qfact[n]*qfinv[i]*qfinv[n-i];
			}else{
				z[i]=0;
			}
			cur*=pq[i];
			//cur*=pq[n-i]-1;
			//cur/=pq[i+1]-1;
		}
	}
	
	/*{
		auto x=z;
		rep(i,n+1)x[i]*=pq[i];
		per(i,n)x[i+1]+=x[i];
		dmp(z);
		dmp(x);
		assert(z==x);
	}*/
	
	vc<mint> t(n+1);
	t[0]=1;
	rng(i,1,n+1){
		t[i]=((pq[n]-pq[i-1])*t[i-1]*(pq[n+1-i]-1)+z[i])*pqinv[i];
	}
	/*{
		auto a=multiply(c,z);
		a.resize(n+1);
		assert(a==t);
	}*/
	
	vc<mint> wei(n+1);
	{
		pow_table pt(3);
		int qn=1;
		rep(i,n)qn=(qn*q.v)%(mint::mod-1);
		int w=1;
		rep(i,n+1){
			wei[i]=pt.ask(w);
			w=(w*qn)%(mint::mod-1);
		}
	}
	//rep(i,n+1)wei[i]*=qfinv[i];
	
	mint ans=0;
	//rep(i,n+1)rep(j,n-i+1)ans+=c[i]*z[j]*wei[n-i-j];
	rep(i,n+1)ans+=t[i]*wei[n-i];
	print(ans);
}

signed main(){
	cin.tie(0);
	ios::sync_with_stdio(0);
	cout<<fixed<<setprecision(20);
	
	//int t;cin>>t;rep(_,t)
	slv();
}

詳細信息

Test #1:

score: 100
Accepted
time: 209ms
memory: 237968kb

input:

2 2 1000000007

output:

43046970

result:

ok 1 number(s): "43046970"

Test #2:

score: 0
Accepted
time: 200ms
memory: 237992kb

input:

100 127 998244353

output:

881381862

result:

ok 1 number(s): "881381862"

Test #3:

score: 0
Accepted
time: 181ms
memory: 237984kb

input:

1 2 540053233

output:

9

result:

ok 1 number(s): "9"

Test #4:

score: 0
Accepted
time: 186ms
memory: 237932kb

input:

2 2 156542707

output:

43046970

result:

ok 1 number(s): "43046970"

Test #5:

score: 0
Accepted
time: 221ms
memory: 238012kb

input:

1 2 186225229

output:

9

result:

ok 1 number(s): "9"

Test #6:

score: 0
Accepted
time: 194ms
memory: 237936kb

input:

3 3 109884329

output:

100602209

result:

ok 1 number(s): "100602209"

Test #7:

score: 0
Accepted
time: 189ms
memory: 237900kb

input:

1 2 144802297

output:

9

result:

ok 1 number(s): "9"

Test #8:

score: 0
Accepted
time: 187ms
memory: 237956kb

input:

20 21992843 328859143

output:

110137213

result:

ok 1 number(s): "110137213"

Test #9:

score: 0
Accepted
time: 230ms
memory: 237988kb

input:

22 332524739 654888401

output:

410922781

result:

ok 1 number(s): "410922781"

Test #10:

score: 0
Accepted
time: 189ms
memory: 237960kb

input:

26 302215049 566649113

output:

221720840

result:

ok 1 number(s): "221720840"

Test #11:

score: 0
Accepted
time: 205ms
memory: 238028kb

input:

15 111009527 722130737

output:

648834664

result:

ok 1 number(s): "648834664"

Test #12:

score: 0
Accepted
time: 210ms
memory: 238028kb

input:

82 110032063 394529383

output:

111730592

result:

ok 1 number(s): "111730592"

Test #13:

score: 0
Accepted
time: 184ms
memory: 237928kb

input:

9 11172911 259650437

output:

68381774

result:

ok 1 number(s): "68381774"

Test #14:

score: 0
Accepted
time: 202ms
memory: 237956kb

input:

86 12016027 354886243

output:

263687778

result:

ok 1 number(s): "263687778"

Test #15:

score: 0
Accepted
time: 220ms
memory: 238028kb

input:

91 273689959 454097881

output:

114436127

result:

ok 1 number(s): "114436127"

Test #16:

score: 0
Accepted
time: 197ms
memory: 237980kb

input:

73 148878967 694206977

output:

176215101

result:

ok 1 number(s): "176215101"

Test #17:

score: 0
Accepted
time: 198ms
memory: 238012kb

input:

45 205982233 227598247

output:

156769598

result:

ok 1 number(s): "156769598"

Test #18:

score: 0
Accepted
time: 181ms
memory: 237976kb

input:

2778 122825869 147297463

output:

43419574

result:

ok 1 number(s): "43419574"

Test #19:

score: 0
Accepted
time: 222ms
memory: 237976kb

input:

289 7729669 589652893

output:

552952137

result:

ok 1 number(s): "552952137"

Test #20:

score: 0
Accepted
time: 205ms
memory: 237964kb

input:

2281 35651417 203950963

output:

21659018

result:

ok 1 number(s): "21659018"

Test #21:

score: 0
Accepted
time: 205ms
memory: 237948kb

input:

1684 258745639 373223677

output:

355596229

result:

ok 1 number(s): "355596229"

Test #22:

score: 0
Accepted
time: 197ms
memory: 237968kb

input:

2107 86850989 455823859

output:

245960059

result:

ok 1 number(s): "245960059"

Test #23:

score: 0
Accepted
time: 202ms
memory: 238032kb

input:

1323 43290799 791120419

output:

509649562

result:

ok 1 number(s): "509649562"

Test #24:

score: 0
Accepted
time: 202ms
memory: 237956kb

input:

2401 34064903 185314627

output:

70571452

result:

ok 1 number(s): "70571452"

Test #25:

score: 0
Accepted
time: 202ms
memory: 238040kb

input:

1073 82288187 564447959

output:

168200843

result:

ok 1 number(s): "168200843"

Test #26:

score: 0
Accepted
time: 205ms
memory: 237904kb

input:

1926 29995039 129122281

output:

60921463

result:

ok 1 number(s): "60921463"

Test #27:

score: 0
Accepted
time: 212ms
memory: 237976kb

input:

3000 66915659 765705179

output:

222619979

result:

ok 1 number(s): "222619979"

Test #28:

score: 0
Accepted
time: 291ms
memory: 249528kb

input:

998818 198334853 998244353

output:

153251445

result:

ok 1 number(s): "153251445"

Test #29:

score: 0
Accepted
time: 235ms
memory: 248504kb

input:

914379 128814383 998244353

output:

477606145

result:

ok 1 number(s): "477606145"

Test #30:

score: 0
Accepted
time: 263ms
memory: 248780kb

input:

944474 478445339 998244353

output:

174204073

result:

ok 1 number(s): "174204073"

Test #31:

score: 0
Accepted
time: 273ms
memory: 248948kb

input:

948637 711592127 998244353

output:

178256114

result:

ok 1 number(s): "178256114"

Test #32:

score: 0
Accepted
time: 247ms
memory: 248700kb

input:

927564 14465663 998244353

output:

315244613

result:

ok 1 number(s): "315244613"

Test #33:

score: 0
Accepted
time: 280ms
memory: 248840kb

input:

934615 392799073 998244353

output:

892700270

result:

ok 1 number(s): "892700270"

Test #34:

score: 0
Accepted
time: 267ms
memory: 248496kb

input:

917196 124972031 998244353

output:

782017412

result:

ok 1 number(s): "782017412"

Test #35:

score: 0
Accepted
time: 291ms
memory: 249116kb

input:

957149 392606173 998244353

output:

159348443

result:

ok 1 number(s): "159348443"

Test #36:

score: 0
Accepted
time: 284ms
memory: 249376kb

input:

997042 184649453 998244353

output:

464643024

result:

ok 1 number(s): "464643024"

Test #37:

score: 0
Accepted
time: 265ms
memory: 248972kb

input:

953353 14071961 998244353

output:

391688875

result:

ok 1 number(s): "391688875"

Test #38:

score: 0
Accepted
time: 800ms
memory: 353964kb

input:

9909956 720431399 720431401

output:

86883659

result:

ok 1 number(s): "86883659"

Test #39:

score: 0
Accepted
time: 801ms
memory: 354132kb

input:

9924163 267052829 267052831

output:

75754681

result:

ok 1 number(s): "75754681"

Test #40:

score: 0
Accepted
time: 826ms
memory: 354628kb

input:

9967885 197873129 197873131

output:

16653739

result:

ok 1 number(s): "16653739"

Test #41:

score: 0
Accepted
time: 813ms
memory: 354060kb

input:

9952642 101872151 101872153

output:

0

result:

ok 1 number(s): "0"

Test #42:

score: 0
Accepted
time: 815ms
memory: 354328kb

input:

9955909 167874431 167874433

output:

130012020

result:

ok 1 number(s): "130012020"

Test #43:

score: 0
Accepted
time: 821ms
memory: 354836kb

input:

9994785 399509567 399509569

output:

153324498

result:

ok 1 number(s): "153324498"

Test #44:

score: 0
Accepted
time: 825ms
memory: 354184kb

input:

9954011 108819131 108819133

output:

101671540

result:

ok 1 number(s): "101671540"

Test #45:

score: 0
Accepted
time: 835ms
memory: 354932kb

input:

9997570 213315827 213315829

output:

57441081

result:

ok 1 number(s): "57441081"

Test #46:

score: 0
Accepted
time: 789ms
memory: 354588kb

input:

9995867 113028299 113028301

output:

67837072

result:

ok 1 number(s): "67837072"

Test #47:

score: 0
Accepted
time: 823ms
memory: 353808kb

input:

9909335 247275617 247275619

output:

202966817

result:

ok 1 number(s): "202966817"

Test #48:

score: 0
Accepted
time: 800ms
memory: 354024kb

input:

9921815 38466881 725310841

output:

601117286

result:

ok 1 number(s): "601117286"

Test #49:

score: 0
Accepted
time: 807ms
memory: 354028kb

input:

9919464 4830599 747345523

output:

168521454

result:

ok 1 number(s): "168521454"

Test #50:

score: 0
Accepted
time: 827ms
memory: 354624kb

input:

9981374 3616373 154722097

output:

2696288

result:

ok 1 number(s): "2696288"

Test #51:

score: 0
Accepted
time: 802ms
memory: 353864kb

input:

9906664 12433457 558159149

output:

538699014

result:

ok 1 number(s): "538699014"

Test #52:

score: 0
Accepted
time: 855ms
memory: 354836kb

input:

9985736 46853 410275823

output:

258567756

result:

ok 1 number(s): "258567756"

Test #53:

score: 0
Accepted
time: 822ms
memory: 354568kb

input:

9962926 33790087 203505083

output:

40932778

result:

ok 1 number(s): "40932778"

Test #54:

score: 0
Accepted
time: 792ms
memory: 353768kb

input:

9903735 146658401 157137433

output:

154493145

result:

ok 1 number(s): "154493145"

Test #55:

score: 0
Accepted
time: 842ms
memory: 353788kb

input:

9913516 105010771 110717611

output:

67979325

result:

ok 1 number(s): "67979325"

Test #56:

score: 0
Accepted
time: 817ms
memory: 354480kb

input:

9953517 268142489 675913921

output:

523115756

result:

ok 1 number(s): "523115756"

Test #57:

score: 0
Accepted
time: 808ms
memory: 354584kb

input:

9981005 11993207 114120883

output:

7261617

result:

ok 1 number(s): "7261617"

Test #58:

score: 0
Accepted
time: 828ms
memory: 354224kb

input:

9945956 36522077 168104303

output:

82398556

result:

ok 1 number(s): "82398556"

Test #59:

score: 0
Accepted
time: 849ms
memory: 354620kb

input:

9967933 15301477 352827883

output:

242773007

result:

ok 1 number(s): "242773007"

Test #60:

score: 0
Accepted
time: 818ms
memory: 353940kb

input:

9911781 83845891 360130933

output:

158254305

result:

ok 1 number(s): "158254305"

Test #61:

score: 0
Accepted
time: 825ms
memory: 353776kb

input:

9916390 100404191 108138473

output:

103346432

result:

ok 1 number(s): "103346432"

Test #62:

score: 0
Accepted
time: 807ms
memory: 354608kb

input:

9974438 7828049 430399297

output:

76675277

result:

ok 1 number(s): "76675277"