QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#110412 | #6518. Not Another Linear Algebra Problem | maroonrk | AC ✓ | 855ms | 354932kb | C++20 | 24.3kb | 2023-06-01 22:01:30 | 2023-06-01 22:01:31 |
Judging History
answer
#ifndef LOCAL
#pragma GCC optimize ("Ofast")
#pragma GCC optimize ("unroll-loops")
#endif
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
#define int ll
#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)
#define gnr(i,a,b) for(int i=int(b)-1;i>=int(a);i--)
#define per(i,b) gnr(i,0,b)
#define pb push_back
#define eb emplace_back
#define a first
#define b second
#define bg begin()
#define ed end()
#define all(x) x.bg,x.ed
#define si(x) int(x.size())
#ifdef LOCAL
#define dmp(x) cerr<<__LINE__<<" "<<#x<<" "<<x<<endl
#else
#define dmp(x) void(0)
#endif
template<class t,class u> bool chmax(t&a,u b){if(a<b){a=b;return true;}else return false;}
template<class t,class u> bool chmin(t&a,u b){if(b<a){a=b;return true;}else return false;}
template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;
using pi=pair<int,int>;
using vi=vc<int>;
template<class t,class u>
ostream& operator<<(ostream& os,const pair<t,u>& p){
return os<<"{"<<p.a<<","<<p.b<<"}";
}
template<class t> ostream& operator<<(ostream& os,const vc<t>& v){
os<<"{";
for(auto e:v)os<<e<<",";
return os<<"}";
}
#define mp make_pair
#define mt make_tuple
#define one(x) memset(x,-1,sizeof(x))
#define zero(x) memset(x,0,sizeof(x))
#ifdef LOCAL
void dmpr(ostream&os){os<<endl;}
template<class T,class... Args>
void dmpr(ostream&os,const T&t,const Args&... args){
os<<t<<" ";
dmpr(os,args...);
}
#define dmp2(...) dmpr(cerr,__LINE__,##__VA_ARGS__)
#else
#define dmp2(...) void(0)
#endif
using uint=unsigned;
using ull=unsigned long long;
template<class t,size_t n>
ostream& operator<<(ostream&os,const array<t,n>&a){
return os<<vc<t>(all(a));
}
template<int i,class T>
void print_tuple(ostream&,const T&){
}
template<int i,class T,class H,class ...Args>
void print_tuple(ostream&os,const T&t){
if(i)os<<",";
os<<get<i>(t);
print_tuple<i+1,T,Args...>(os,t);
}
template<class ...Args>
ostream& operator<<(ostream&os,const tuple<Args...>&t){
os<<"{";
print_tuple<0,tuple<Args...>,Args...>(os,t);
return os<<"}";
}
ll read(){
ll i;
cin>>i;
return i;
}
vi readvi(int n,int off=0){
vi v(n);
rep(i,n)v[i]=read()+off;
return v;
}
pi readpi(int off=0){
int a,b;cin>>a>>b;
return pi(a+off,b+off);
}
template<class t>
void print_single(t x,int suc=1){
cout<<x;
if(suc==1)
cout<<"\n";
if(suc==2)
cout<<" ";
}
template<class t,class u>
void print_single(const pair<t,u>&p,int suc=1){
print_single(p.a,2);
print_single(p.b,suc);
}
template<class T>
void print_single(const vector<T>&v,int suc=1){
rep(i,v.size())
print_single(v[i],i==int(v.size())-1?suc:2);
}
template<class T>
void print_offset(const vector<T>&v,ll off,int suc=1){
rep(i,v.size())
print_single(v[i]+off,i==int(v.size())-1?suc:2);
}
template<class T,size_t N>
void print_single(const array<T,N>&v,int suc=1){
rep(i,N)
print_single(v[i],i==int(N)-1?suc:2);
}
template<class T>
void print(const T&t){
print_single(t);
}
template<class T,class ...Args>
void print(const T&t,const Args&...args){
print_single(t,2);
print(args...);
}
string readString(){
string s;
cin>>s;
return s;
}
template<class T>
T sq(const T& t){
return t*t;
}
void YES(bool ex=true){
cout<<"YES\n";
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void NO(bool ex=true){
cout<<"NO\n";
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void Yes(bool ex=true){
cout<<"Yes\n";
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void No(bool ex=true){
cout<<"No\n";
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
//#define CAPITAL
/*
void yes(bool ex=true){
#ifdef CAPITAL
cout<<"YES"<<"\n";
#else
cout<<"Yes"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void no(bool ex=true){
#ifdef CAPITAL
cout<<"NO"<<"\n";
#else
cout<<"No"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}*/
void possible(bool ex=true){
#ifdef CAPITAL
cout<<"POSSIBLE"<<"\n";
#else
cout<<"Possible"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
void impossible(bool ex=true){
#ifdef CAPITAL
cout<<"IMPOSSIBLE"<<"\n";
#else
cout<<"Impossible"<<"\n";
#endif
if(ex)exit(0);
#ifdef LOCAL
cout.flush();
#endif
}
constexpr ll ten(int n){
return n==0?1:ten(n-1)*10;
}
const ll infLL=LLONG_MAX/3;
#ifdef int
const int inf=infLL;
#else
const int inf=INT_MAX/2-100;
#endif
int topbit(signed t){
return t==0?-1:31-__builtin_clz(t);
}
int topbit(ll t){
return t==0?-1:63-__builtin_clzll(t);
}
int topbit(ull t){
return t==0?-1:63-__builtin_clzll(t);
}
int botbit(signed a){
return a==0?32:__builtin_ctz(a);
}
int botbit(ll a){
return a==0?64:__builtin_ctzll(a);
}
int botbit(ull a){
return a==0?64:__builtin_ctzll(a);
}
int popcount(signed t){
return __builtin_popcount(t);
}
int popcount(ll t){
return __builtin_popcountll(t);
}
int popcount(ull t){
return __builtin_popcountll(t);
}
int bitparity(ll t){
return __builtin_parityll(t);
}
bool ispow2(int i){
return i&&(i&-i)==i;
}
ll mask(int i){
return (ll(1)<<i)-1;
}
ull umask(int i){
return (ull(1)<<i)-1;
}
ll minp2(ll n){
if(n<=1)return 1;
else return ll(1)<<(topbit(n-1)+1);
}
bool inc(int a,int b,int c){
return a<=b&&b<=c;
}
template<class t> void mkuni(vc<t>&v){
sort(all(v));
v.erase(unique(all(v)),v.ed);
}
ll rand_int(ll l, ll r) { //[l, r]
//#ifdef LOCAL
static mt19937_64 gen;
/*#else
static mt19937_64 gen(chrono::steady_clock::now().time_since_epoch().count());
#endif*/
return uniform_int_distribution<ll>(l, r)(gen);
}
ll rand_int(ll k){ //[0,k)
return rand_int(0,k-1);
}
template<class t>
void myshuffle(vc<t>&a){
rep(i,si(a))swap(a[i],a[rand_int(0,i)]);
}
template<class t>
int lwb(const vc<t>&v,const t&a){
return lower_bound(all(v),a)-v.bg;
}
template<class t>
bool bis(const vc<t>&v,const t&a){
return binary_search(all(v),a);
}
vvc<int> readGraph(int n,int m){
vvc<int> g(n);
rep(i,m){
int a,b;
cin>>a>>b;
//sc.read(a,b);
a--;b--;
g[a].pb(b);
g[b].pb(a);
}
return g;
}
vvc<int> readTree(int n){
return readGraph(n,n-1);
}
vc<ll> presum(const vi&a){
vc<ll> s(si(a)+1);
rep(i,si(a))s[i+1]=s[i]+a[i];
return s;
}
//BIT で数列を管理するときに使う (CF850C)
template<class t>
vc<t> predif(vc<t> a){
gnr(i,1,si(a))a[i]-=a[i-1];
return a;
}
template<class t>
vvc<ll> imos(const vvc<t>&a){
int n=si(a),m=si(a[0]);
vvc<ll> b(n+1,vc<ll>(m+1));
rep(i,n)rep(j,m)
b[i+1][j+1]=b[i+1][j]+b[i][j+1]-b[i][j]+a[i][j];
return b;
}
//verify してないや
void transvvc(int&n,int&m){
swap(n,m);
}
template<class t,class... Args>
void transvvc(int&n,int&m,vvc<t>&a,Args&...args){
assert(si(a)==n);
vvc<t> b(m,vi(n));
rep(i,n){
assert(si(a[i])==m);
rep(j,m)b[j][i]=a[i][j];
}
a.swap(b);
transvvc(n,m,args...);
}
//CF854E
void rotvvc(int&n,int&m){
swap(n,m);
}
template<class t,class... Args>
void rotvvc(int&n,int&m,vvc<t>&a,Args&...args){
assert(si(a)==n);
vvc<t> b(m,vi(n));
rep(i,n){
assert(si(a[i])==m);
rep(j,m)b[m-1-j][i]=a[i][j];
}
a.swap(b);
rotvvc(n,m,args...);
}
//ソートして i 番目が idx[i]
//CF850C
template<class t>
vi sortidx(const vc<t>&a){
int n=si(a);
vi idx(n);iota(all(idx),0);
sort(all(idx),[&](int i,int j){return a[i]<a[j];});
return idx;
}
//vs[i]=a[idx[i]]
//例えば sortidx で得た idx を使えば単にソート列になって返ってくる
//CF850C
template<class t>
vc<t> a_idx(const vc<t>&a,const vi&idx){
int n=si(a);
assert(si(idx)==n);
vc<t> vs(n);
rep(i,n)vs[i]=a[idx[i]];
return vs;
}
//CF850C
vi invperm(const vi&p){
int n=si(p);
vi q(n);
rep(i,n)q[p[i]]=i;
return q;
}
template<class t,class s=t>
s SUM(const vc<t>&a){
return accumulate(all(a),s(0));
}
template<class t>
t MAX(const vc<t>&a){
return *max_element(all(a));
}
template<class t>
t MIN(const vc<t>&a){
return *min_element(all(a));
}
template<class t>
pair<t,int> MINi(const vc<t>&a){
auto itr=min_element(all(a));
return mp(*itr,itr-a.bg);
}
template<class t,class u>
pair<t,u> operator+(const pair<t,u>&a,const pair<t,u>&b){
return mp(a.a+b.a,a.b+b.b);
}
vi vid(int n){
vi res(n);iota(all(res),0);
return res;
}
template<class S>
S getrev(S s){
reverse(all(s));
return s;
}
pi operator+(pi a,pi b){return pi(a.a+b.a,a.b+b.b);}
template<class t>
t gpp(vc<t>&vs){
assert(si(vs));
t res=move(vs.back());
vs.pop_back();
return res;
}
//mint107 は verify してねえ
#define DYNAMIC_MOD
struct modinfo{uint mod,root;
#ifdef DYNAMIC_MOD
constexpr modinfo(uint m,uint r):mod(m),root(r),im(0){set_mod(m);}
ull im;
constexpr void set_mod(uint m){
mod=m;
im=ull(-1)/m+1;
}
uint product(uint a,uint b)const{
ull z=ull(a)*b;
uint x=((unsigned __int128)z*im)>>64;
uint v=uint(z)-x*mod;
return v<mod?v:v+mod;
}
#endif
};
template<modinfo const&ref>
struct modular{
static constexpr uint const &mod=ref.mod;
static modular root(){return modular(ref.root);}
uint v;
//modular(initializer_list<uint>ls):v(*ls.bg){}
modular(ll vv=0){s(vv%mod+mod);}
modular& s(uint vv){
v=vv<mod?vv:vv-mod;
return *this;
}
modular operator-()const{return modular()-*this;}
modular& operator+=(const modular&rhs){return s(v+rhs.v);}
modular&operator-=(const modular&rhs){return s(v+mod-rhs.v);}
modular&operator*=(const modular&rhs){
#ifndef DYNAMIC_MOD
v=ull(v)*rhs.v%mod;
#else
v=ref.product(v,rhs.v);
#endif
return *this;
}
modular&operator/=(const modular&rhs){return *this*=rhs.inv();}
modular operator+(const modular&rhs)const{return modular(*this)+=rhs;}
modular operator-(const modular&rhs)const{return modular(*this)-=rhs;}
modular operator*(const modular&rhs)const{return modular(*this)*=rhs;}
modular operator/(const modular&rhs)const{return modular(*this)/=rhs;}
modular pow(ll n)const{
if(n<0)return inv().pow(-n);
modular res(1),x(*this);
while(n){
if(n&1)res*=x;
x*=x;
n>>=1;
}
return res;
}
modular inv()const{return pow(mod-2);}
/*modular inv()const{
int x,y;
int g=extgcd<ll>(v,mod,x,y);
assert(g==1);
if(x<0)x+=mod;
return modular(x);
}*/
friend modular operator+(ll x,const modular&y){
return modular(x)+y;
}
friend modular operator-(ll x,const modular&y){
return modular(x)-y;
}
friend modular operator*(ll x,const modular&y){
return modular(x)*y;
}
friend modular operator/(ll x,const modular&y){
return modular(x)/y;
}
friend ostream& operator<<(ostream&os,const modular&m){
return os<<m.v;
}
friend istream& operator>>(istream&is,modular&m){
ll x;is>>x;
m=modular(x);
return is;
}
bool operator<(const modular&r)const{return v<r.v;}
bool operator==(const modular&r)const{return v==r.v;}
bool operator!=(const modular&r)const{return v!=r.v;}
explicit operator bool()const{
return v;
}
};
//#define USE_GOOD_MOD
//size of input must be a power of 2
//output of forward fmt is bit-reversed
//output elements are in the range [0,mod*4)
//input of inverse fmt should be bit-reversed
template<class mint>
void inplace_fmt(const int n,mint*const f,bool inv){
static constexpr uint mod=mint::mod;
static constexpr uint mod2=mod*2;
static constexpr int L=30;
static mint g[L],ig[L],p2[L];
if(g[0].v==0){
rep(i,L){
mint w=-mint::root().pow(((mod-1)>>(i+2))*3);
g[i]=w;
ig[i]=w.inv();
p2[i]=mint(1<<i).inv();
}
}
if(!inv){
int b=n;
if(b>>=1){//input:[0,mod)
rep(i,b){
uint x=f[i+b].v;
f[i+b].v=f[i].v+mod-x;
f[i].v+=x;
}
}
if(b>>=1){//input:[0,mod*2)
mint p=1;
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
while(b){
if(b>>=1){//input:[0,mod*3)
mint p=1;
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
if(b>>=1){//input:[0,mod*4)
mint p=1;
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
}
}else{
int b=1;
if(b<n/2){//input:[0,mod)
mint p=1;
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
ull x=f[j].v+mod-f[j+b].v;
f[j].v+=f[j+b].v;
f[j+b].v=x*p.v%mod;
}
p*=ig[__builtin_ctz(++k)];
}
b<<=1;
}
for(;b<n/2;b<<=1){
mint p=1;
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b/2){//input:[0,mod*2)
ull x=f[j].v+mod2-f[j+b].v;
f[j].v+=f[j+b].v;
f[j].v=(f[j].v)<mod2?f[j].v:f[j].v-mod2;
f[j+b].v=x*p.v%mod;
}
rng(j,i+b/2,i+b){//input:[0,mod)
ull x=f[j].v+mod-f[j+b].v;
f[j].v+=f[j+b].v;
f[j+b].v=x*p.v%mod;
}
p*=ig[__builtin_ctz(++k)];
}
}
if(b<n){//input:[0,mod*2)
rep(i,b){
uint x=f[i+b].v;
f[i+b].v=f[i].v+mod2-x;
f[i].v+=x;
}
}
mint z=p2[__lg(n)];
rep(i,n)f[i]*=z;
}
}
template<class mint>
void inplace_fmt(vector<mint>&f,bool inv){
inplace_fmt(si(f),f.data(),inv);
}
//size of input must be a power of 2
//output elements are in the range [0,mod*4)
template<class mint>
void half_fmt(const int n,mint*const f){
static constexpr uint mod=mint::mod;
static constexpr uint mod2=mod*2;
static const int L=30;
static mint g[L],h[L];
if(g[0].v==0){
rep(i,L){
g[i]=-mint::root().pow(((mod-1)>>(i+2))*3);
h[i]=mint::root().pow((mod-1)>>(i+2));
}
}
int b=n;
int lv=0;
if(b>>=1){//input:[0,mod)
mint p=h[lv++];
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
if(b>>=1){//input:[0,mod*2)
mint p=h[lv++];
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
while(b){
if(b>>=1){//input:[0,mod*3)
mint p=h[lv++];
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
if(b>>=1){//input:[0,mod*4)
mint p=h[lv++];
for(int i=0,k=0;i<n;i+=b*2){
rng(j,i,i+b){
uint x=(f[j+b]*p).v;
f[j].v=(f[j].v<mod2?f[j].v:f[j].v-mod2);
f[j+b].v=f[j].v+mod-x;
f[j].v+=x;
}
p*=g[__builtin_ctz(++k)];
}
}
}
}
template<class mint>
void half_fmt(vector<mint>&f){
half_fmt(si(f),f.data());
}
#ifdef USE_GOOD_MOD
template<class mint>
vc<mint> multiply(vc<mint> x,const vc<mint>&y,bool same=false){
int n=si(x)+si(y)-1;
int s=1;
while(s<n)s*=2;
x.resize(s);inplace_fmt(x,false);
if(!same){
static vc<mint> z;
z.clear();z.resize(s);
rep(i,si(y))z[i]=y[i];
inplace_fmt(z,false);
rep(i,s)x[i]*=z[i];
}else{
rep(i,s)x[i]*=x[i];
}
inplace_fmt(x,true);x.resize(n);
return x;
}
template<class mint>
vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){
int s=si(x);
assert(ispow2(s));
assert(si(y));
x.resize(s);inplace_fmt(x,false);
if(!same){
static vc<mint> z;
z.clear();z.resize(s);
rep(i,si(y))z[i]=y[i];
inplace_fmt(z,false);
rep(i,s)x[i]*=z[i];
}else{
rep(i,s)x[i]*=x[i];
}
inplace_fmt(x,true);
return x;
}
#else
//59501818244292734739283969-1=5.95*10^25 までの値を正しく計算
//最終的な列の大きさが 2^24 までなら動く
//最終的な列の大きさが 2^20 以下のときは,下の 3 つの素数を使ったほうが速い(は?)
//VERIFY: yosupo
//Yukicoder No980 (same=true)
namespace arbitrary_convolution{
constexpr modinfo base0{167772161,3};//2^25 * 5 + 1
constexpr modinfo base1{469762049,3};//2^26 * 7 + 1
constexpr modinfo base2{754974721,11};//2^24 * 45 + 1
//extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
//extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
//extern constexpr modinfo base2{1053818881,7};//2^20 * 1005 + 1
using mint0=modular<base0>;
using mint1=modular<base1>;
using mint2=modular<base2>;
template<class t,class mint>
vc<t> sub(const vc<mint>&x,const vc<mint>&y,bool same=false){
int n=si(x)+si(y)-1;
int s=1;
while(s<n)s*=2;
vc<t> z(s);rep(i,si(x))z[i]=x[i].v;
inplace_fmt(z,false);
if(!same){
vc<t> w(s);rep(i,si(y))w[i]=y[i].v;
inplace_fmt(w,false);
rep(i,s)z[i]*=w[i];
}else{
rep(i,s)z[i]*=z[i];
}
inplace_fmt(z,true);z.resize(n);
return z;
}
template<class mint>
vc<mint> multiply(const vc<mint>&x,const vc<mint>&y,bool same=false){
auto d0=sub<mint0>(x,y,same);
auto d1=sub<mint1>(x,y,same);
auto d2=sub<mint2>(x,y,same);
int n=si(d0);
vc<mint> res(n);
static const mint1 r01=mint1(mint0::mod).inv();
static const mint2 r02=mint2(mint0::mod).inv();
static const mint2 r12=mint2(mint1::mod).inv();
static const mint2 r02r12=r02*r12;
static const mint w1=mint(mint0::mod);
static const mint w2=w1*mint(mint1::mod);
rep(i,n){
ull a=d0[i].v;
ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod;
ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod;
res[i].v=(a+b*w1.v+c*w2.v)%mint::mod;
}
return res;
}
template<class t,class mint>
vc<t>&sub_givenlength(const vc<mint>&x,const vc<mint>&y,bool same=false){
int s=si(x);
assert(ispow2(s));
assert(si(y)==s);
static vc<t> z;
z.clear();z.resize(s);
rep(i,si(x))z[i]=x[i].v;
inplace_fmt(z,false);
if(!same){
static vc<t> w;
w.clear();w.resize(s);
rep(i,si(y))w[i]=y[i].v;
inplace_fmt(w,false);
rep(i,s)z[i]*=w[i];
}else{
rep(i,s)z[i]*=z[i];
}
inplace_fmt(z,true);
return z;
}
template<class mint>
vc<mint> multiply_givenlength(vc<mint> x,const vc<mint>&y,bool same=false){
auto&d0=sub_givenlength<mint0>(x,y,same);
auto&d1=sub_givenlength<mint1>(x,y,same);
auto&d2=sub_givenlength<mint2>(x,y,same);
int n=si(d0);
x.resize(n);
static const mint1 r01=mint1(mint0::mod).inv();
static const mint2 r02=mint2(mint0::mod).inv();
static const mint2 r12=mint2(mint1::mod).inv();
static const mint2 r02r12=r02*r12;
static const mint w1=mint(mint0::mod);
static const mint w2=w1*mint(mint1::mod);
rep(i,n){
ull a=d0[i].v;
ull b=(d1[i].v+mint1::mod-a)*r01.v%mint1::mod;
ull c=((d2[i].v+mint2::mod-a)*r02r12.v+(mint2::mod-b)*r12.v)%mint2::mod;
x[i].v=(a+b*w1.v+c*w2.v)%mint::mod;
}
return x;
}
}
using arbitrary_convolution::multiply;
using arbitrary_convolution::multiply_givenlength;
#endif
//UTPC2021 C
namespace integer_convolution{
extern constexpr modinfo base0{1045430273,3};//2^20 * 997 + 1
extern constexpr modinfo base1{1051721729,6};//2^20 * 1003 + 1
//extern constexpr modinfo base0{469762049,3};//2^26 * 7 + 1
//extern constexpr modinfo base1{754974721,11};//2^24 * 45 + 1
using mint0=modular<base0>;
using mint1=modular<base1>;
template<class t>
vc<t> sub(const vi&x,const vi&y,bool same=false){
int n=si(x)+si(y)-1;
int s=1;
while(s<n)s*=2;
vc<t> z(s);rep(i,si(x))z[i]=x[i];
inplace_fmt(z,false);
if(!same){
vc<t> w(s);rep(i,si(y))w[i]=y[i];
inplace_fmt(w,false);
rep(i,s)z[i]*=w[i];
}else{
rep(i,s)z[i]*=z[i];
}
inplace_fmt(z,true);z.resize(n);
return z;
}
vi multiply(const vi&x,const vi&y,bool same=false){
auto d0=sub<mint0>(x,y,same);
auto d1=sub<mint1>(x,y,same);
const mint1 r=mint1(mint0::mod).inv();
const ll v=ll(mint0::mod)*mint1::mod;
int n=si(d0);
vi res(n);
rep(i,n){
res[i]=d0[i].v+(r*(d1[i]-d0[i].v)).v*(ull)mint0::mod;
if(res[i]>v/2)res[i]-=v;
}
return res;
}
}
//最大で 1<<mx のサイズの fft が登場!
template<class mint>
vc<mint> large_convolution(const vc<mint>&a,const vc<mint>&b,int mx){
int n=si(a),m=si(b);
vc<mint> c(n+m-1);
int len=1<<(mx-1);
for(int i=0;i<n;i+=len){
for(int j=0;j<n;j+=len){
int x=min(len,n-i),y=min(len,m-j);
auto d=multiply(vc<mint>(a.bg+i,a.bg+i+x),vc<mint>(b.bg+j,b.bg+j+y));
rep(k,si(d))
c[i+j+k]+=d[k];
}
}
return c;
}
//input A: N 次,B ?,M
//output D: M 次多項式
//C を M 次多項式として
//[x^N] A*B*C = [x^M] D*C
//となるような D を返す
//CF796F
template<class mint>
vc<mint> transpose_advance(const vc<mint>&a,const vc<mint>&b,int m){
int n=si(a)-1;
auto d=multiply(a,b);
vc<mint> res(m+1);
if(n>=m){
rep(i,m+1)res[i]=d[i+n-m];
}else{
rng(i,m-n,m+1)res[i]=d[i+n-m];
}
return res;
}
//Yukicoder 2166
template<class mint>
void chmult(vc<mint>&x,const vc<mint>&y,int s){
x=multiply(move(x),y);
x.resize(s);
}
#ifndef DYNAMIC_MOD
extern constexpr modinfo base{998244353,3};
//extern constexpr modinfo base{1000000007,0};
//extern constexpr modinfo base{2147483579,0};//2^31 未満の最大の安全素数
//modinfo base{1,0};
#ifdef USE_GOOD_MOD
static_assert(base.mod==998244353);
#endif
#else
modinfo base(1,0);
extern constexpr modinfo base107(1000000007,0);
using mint107=modular<base107>;
#endif
using mint=modular<base>;
mint parity(int i){
return i%2==0?1:-1;
}
#ifdef LOCAL
const int vmax=10010;
#else
const int vmax=ten(7)+10;
#endif
mint q,pq[vmax],pqinv[vmax],qfact[vmax],qfinv[vmax];
int uso[vmax];
//あらゆるものが q で作られている
//qfact[k]=(q-1)(q^2-1)...(q^k-1)
void initqfact(){
pq[0]=1;
rep(i,vmax-1)pq[i+1]=pq[i]*q;
pqinv[vmax-1]=pq[vmax-1].inv();
per(i,vmax-1)pqinv[i]=pqinv[i+1]*q;
qfact[0]=1;
rng(n,1,vmax){
uso[n]=uso[n-1];
mint v=pq[n]-1;
if(v==0){
uso[n]++;
v=1;
}
qfact[n]=qfact[n-1]*v;// /(q-1)
}
qfinv[vmax-1]=qfact[vmax-1].inv();
gnr(n,1,vmax){
mint v=pq[n]-1;
if(v==0)v=1;
qfinv[n-1]=qfinv[n]*v;// /(q-1)
}
}
//2^n の部分空間であって,ランク k のものの個数
//ABC278H
mint subspace(int n,int k){
if(n<k)return 0;
return qfact[n]*qfinv[k]*qfinv[n-k];
}
//input[i]: i 次元ベクトル空間を固定したとする.
//そこに入るベクトルの集合であって何らかの条件を満たすもの,の個数
//output[i]: 上と同じだが,部分集合が i 次元をちゃんと span する,の個数
//ABC278H
vc<mint> getspanning(vc<mint> a){
int n=si(a);
rep(i,n)a[i]*=qfinv[i];
vc<mint> w(n);
rep(i,n)w[i]=parity(i)*q.pow(i*(i-1)/2)*qfinv[i];
auto b=multiply(move(a),w);
b.resize(n);
rep(i,n)b[i]*=qfact[i];
return b;
}
struct pow_table{
const int B;
vc<mint> small,large;
pow_table(mint w):B(sqrtl(mint::mod)+1),small(B+1),large(B+1){
small[0]=1;
rep(i,B)small[i+1]=small[i]*w;
large[0]=1;
rep(i,B)large[i+1]=large[i]*small[B];
}
mint ask(int i){
assert(inc(0,i,mint::mod));
return small[i%B]*large[i/B];
}
};
void slv(){
int n,qv;cin>>n>>qv;
base.set_mod(read());
q=qv;
initqfact();
assert(qfinv[vmax-1]);
/*vc<mint> c(n+1);
rep(i,n+1)c[i]=q.pow((n-1+n-i)*i/2);
{
auto d=c;
rep(i,n+1)d[i]*=pq[i];
vc<mint> e(n+1);
e[0]=1;
rep(i,n)e[i+1]=c[i]*pq[n];
assert(d==e);
}*/
vc<mint> z(n+1);
//rep(i,n+1)z[i]=parity(i)*q.pow(i*(i-1)/2)*qfinv[i];
{
mint cur=1;
rep(i,n+1){
z[i]=parity(i)*cur;
if(uso[n-i]+uso[i]==uso[n]){
z[i]*=qfact[n]*qfinv[i]*qfinv[n-i];
}else{
z[i]=0;
}
cur*=pq[i];
//cur*=pq[n-i]-1;
//cur/=pq[i+1]-1;
}
}
/*{
auto x=z;
rep(i,n+1)x[i]*=pq[i];
per(i,n)x[i+1]+=x[i];
dmp(z);
dmp(x);
assert(z==x);
}*/
vc<mint> t(n+1);
t[0]=1;
rng(i,1,n+1){
t[i]=((pq[n]-pq[i-1])*t[i-1]*(pq[n+1-i]-1)+z[i])*pqinv[i];
}
/*{
auto a=multiply(c,z);
a.resize(n+1);
assert(a==t);
}*/
vc<mint> wei(n+1);
{
pow_table pt(3);
int qn=1;
rep(i,n)qn=(qn*q.v)%(mint::mod-1);
int w=1;
rep(i,n+1){
wei[i]=pt.ask(w);
w=(w*qn)%(mint::mod-1);
}
}
//rep(i,n+1)wei[i]*=qfinv[i];
mint ans=0;
//rep(i,n+1)rep(j,n-i+1)ans+=c[i]*z[j]*wei[n-i-j];
rep(i,n+1)ans+=t[i]*wei[n-i];
print(ans);
}
signed main(){
cin.tie(0);
ios::sync_with_stdio(0);
cout<<fixed<<setprecision(20);
//int t;cin>>t;rep(_,t)
slv();
}
详细
Test #1:
score: 100
Accepted
time: 209ms
memory: 237968kb
input:
2 2 1000000007
output:
43046970
result:
ok 1 number(s): "43046970"
Test #2:
score: 0
Accepted
time: 200ms
memory: 237992kb
input:
100 127 998244353
output:
881381862
result:
ok 1 number(s): "881381862"
Test #3:
score: 0
Accepted
time: 181ms
memory: 237984kb
input:
1 2 540053233
output:
9
result:
ok 1 number(s): "9"
Test #4:
score: 0
Accepted
time: 186ms
memory: 237932kb
input:
2 2 156542707
output:
43046970
result:
ok 1 number(s): "43046970"
Test #5:
score: 0
Accepted
time: 221ms
memory: 238012kb
input:
1 2 186225229
output:
9
result:
ok 1 number(s): "9"
Test #6:
score: 0
Accepted
time: 194ms
memory: 237936kb
input:
3 3 109884329
output:
100602209
result:
ok 1 number(s): "100602209"
Test #7:
score: 0
Accepted
time: 189ms
memory: 237900kb
input:
1 2 144802297
output:
9
result:
ok 1 number(s): "9"
Test #8:
score: 0
Accepted
time: 187ms
memory: 237956kb
input:
20 21992843 328859143
output:
110137213
result:
ok 1 number(s): "110137213"
Test #9:
score: 0
Accepted
time: 230ms
memory: 237988kb
input:
22 332524739 654888401
output:
410922781
result:
ok 1 number(s): "410922781"
Test #10:
score: 0
Accepted
time: 189ms
memory: 237960kb
input:
26 302215049 566649113
output:
221720840
result:
ok 1 number(s): "221720840"
Test #11:
score: 0
Accepted
time: 205ms
memory: 238028kb
input:
15 111009527 722130737
output:
648834664
result:
ok 1 number(s): "648834664"
Test #12:
score: 0
Accepted
time: 210ms
memory: 238028kb
input:
82 110032063 394529383
output:
111730592
result:
ok 1 number(s): "111730592"
Test #13:
score: 0
Accepted
time: 184ms
memory: 237928kb
input:
9 11172911 259650437
output:
68381774
result:
ok 1 number(s): "68381774"
Test #14:
score: 0
Accepted
time: 202ms
memory: 237956kb
input:
86 12016027 354886243
output:
263687778
result:
ok 1 number(s): "263687778"
Test #15:
score: 0
Accepted
time: 220ms
memory: 238028kb
input:
91 273689959 454097881
output:
114436127
result:
ok 1 number(s): "114436127"
Test #16:
score: 0
Accepted
time: 197ms
memory: 237980kb
input:
73 148878967 694206977
output:
176215101
result:
ok 1 number(s): "176215101"
Test #17:
score: 0
Accepted
time: 198ms
memory: 238012kb
input:
45 205982233 227598247
output:
156769598
result:
ok 1 number(s): "156769598"
Test #18:
score: 0
Accepted
time: 181ms
memory: 237976kb
input:
2778 122825869 147297463
output:
43419574
result:
ok 1 number(s): "43419574"
Test #19:
score: 0
Accepted
time: 222ms
memory: 237976kb
input:
289 7729669 589652893
output:
552952137
result:
ok 1 number(s): "552952137"
Test #20:
score: 0
Accepted
time: 205ms
memory: 237964kb
input:
2281 35651417 203950963
output:
21659018
result:
ok 1 number(s): "21659018"
Test #21:
score: 0
Accepted
time: 205ms
memory: 237948kb
input:
1684 258745639 373223677
output:
355596229
result:
ok 1 number(s): "355596229"
Test #22:
score: 0
Accepted
time: 197ms
memory: 237968kb
input:
2107 86850989 455823859
output:
245960059
result:
ok 1 number(s): "245960059"
Test #23:
score: 0
Accepted
time: 202ms
memory: 238032kb
input:
1323 43290799 791120419
output:
509649562
result:
ok 1 number(s): "509649562"
Test #24:
score: 0
Accepted
time: 202ms
memory: 237956kb
input:
2401 34064903 185314627
output:
70571452
result:
ok 1 number(s): "70571452"
Test #25:
score: 0
Accepted
time: 202ms
memory: 238040kb
input:
1073 82288187 564447959
output:
168200843
result:
ok 1 number(s): "168200843"
Test #26:
score: 0
Accepted
time: 205ms
memory: 237904kb
input:
1926 29995039 129122281
output:
60921463
result:
ok 1 number(s): "60921463"
Test #27:
score: 0
Accepted
time: 212ms
memory: 237976kb
input:
3000 66915659 765705179
output:
222619979
result:
ok 1 number(s): "222619979"
Test #28:
score: 0
Accepted
time: 291ms
memory: 249528kb
input:
998818 198334853 998244353
output:
153251445
result:
ok 1 number(s): "153251445"
Test #29:
score: 0
Accepted
time: 235ms
memory: 248504kb
input:
914379 128814383 998244353
output:
477606145
result:
ok 1 number(s): "477606145"
Test #30:
score: 0
Accepted
time: 263ms
memory: 248780kb
input:
944474 478445339 998244353
output:
174204073
result:
ok 1 number(s): "174204073"
Test #31:
score: 0
Accepted
time: 273ms
memory: 248948kb
input:
948637 711592127 998244353
output:
178256114
result:
ok 1 number(s): "178256114"
Test #32:
score: 0
Accepted
time: 247ms
memory: 248700kb
input:
927564 14465663 998244353
output:
315244613
result:
ok 1 number(s): "315244613"
Test #33:
score: 0
Accepted
time: 280ms
memory: 248840kb
input:
934615 392799073 998244353
output:
892700270
result:
ok 1 number(s): "892700270"
Test #34:
score: 0
Accepted
time: 267ms
memory: 248496kb
input:
917196 124972031 998244353
output:
782017412
result:
ok 1 number(s): "782017412"
Test #35:
score: 0
Accepted
time: 291ms
memory: 249116kb
input:
957149 392606173 998244353
output:
159348443
result:
ok 1 number(s): "159348443"
Test #36:
score: 0
Accepted
time: 284ms
memory: 249376kb
input:
997042 184649453 998244353
output:
464643024
result:
ok 1 number(s): "464643024"
Test #37:
score: 0
Accepted
time: 265ms
memory: 248972kb
input:
953353 14071961 998244353
output:
391688875
result:
ok 1 number(s): "391688875"
Test #38:
score: 0
Accepted
time: 800ms
memory: 353964kb
input:
9909956 720431399 720431401
output:
86883659
result:
ok 1 number(s): "86883659"
Test #39:
score: 0
Accepted
time: 801ms
memory: 354132kb
input:
9924163 267052829 267052831
output:
75754681
result:
ok 1 number(s): "75754681"
Test #40:
score: 0
Accepted
time: 826ms
memory: 354628kb
input:
9967885 197873129 197873131
output:
16653739
result:
ok 1 number(s): "16653739"
Test #41:
score: 0
Accepted
time: 813ms
memory: 354060kb
input:
9952642 101872151 101872153
output:
0
result:
ok 1 number(s): "0"
Test #42:
score: 0
Accepted
time: 815ms
memory: 354328kb
input:
9955909 167874431 167874433
output:
130012020
result:
ok 1 number(s): "130012020"
Test #43:
score: 0
Accepted
time: 821ms
memory: 354836kb
input:
9994785 399509567 399509569
output:
153324498
result:
ok 1 number(s): "153324498"
Test #44:
score: 0
Accepted
time: 825ms
memory: 354184kb
input:
9954011 108819131 108819133
output:
101671540
result:
ok 1 number(s): "101671540"
Test #45:
score: 0
Accepted
time: 835ms
memory: 354932kb
input:
9997570 213315827 213315829
output:
57441081
result:
ok 1 number(s): "57441081"
Test #46:
score: 0
Accepted
time: 789ms
memory: 354588kb
input:
9995867 113028299 113028301
output:
67837072
result:
ok 1 number(s): "67837072"
Test #47:
score: 0
Accepted
time: 823ms
memory: 353808kb
input:
9909335 247275617 247275619
output:
202966817
result:
ok 1 number(s): "202966817"
Test #48:
score: 0
Accepted
time: 800ms
memory: 354024kb
input:
9921815 38466881 725310841
output:
601117286
result:
ok 1 number(s): "601117286"
Test #49:
score: 0
Accepted
time: 807ms
memory: 354028kb
input:
9919464 4830599 747345523
output:
168521454
result:
ok 1 number(s): "168521454"
Test #50:
score: 0
Accepted
time: 827ms
memory: 354624kb
input:
9981374 3616373 154722097
output:
2696288
result:
ok 1 number(s): "2696288"
Test #51:
score: 0
Accepted
time: 802ms
memory: 353864kb
input:
9906664 12433457 558159149
output:
538699014
result:
ok 1 number(s): "538699014"
Test #52:
score: 0
Accepted
time: 855ms
memory: 354836kb
input:
9985736 46853 410275823
output:
258567756
result:
ok 1 number(s): "258567756"
Test #53:
score: 0
Accepted
time: 822ms
memory: 354568kb
input:
9962926 33790087 203505083
output:
40932778
result:
ok 1 number(s): "40932778"
Test #54:
score: 0
Accepted
time: 792ms
memory: 353768kb
input:
9903735 146658401 157137433
output:
154493145
result:
ok 1 number(s): "154493145"
Test #55:
score: 0
Accepted
time: 842ms
memory: 353788kb
input:
9913516 105010771 110717611
output:
67979325
result:
ok 1 number(s): "67979325"
Test #56:
score: 0
Accepted
time: 817ms
memory: 354480kb
input:
9953517 268142489 675913921
output:
523115756
result:
ok 1 number(s): "523115756"
Test #57:
score: 0
Accepted
time: 808ms
memory: 354584kb
input:
9981005 11993207 114120883
output:
7261617
result:
ok 1 number(s): "7261617"
Test #58:
score: 0
Accepted
time: 828ms
memory: 354224kb
input:
9945956 36522077 168104303
output:
82398556
result:
ok 1 number(s): "82398556"
Test #59:
score: 0
Accepted
time: 849ms
memory: 354620kb
input:
9967933 15301477 352827883
output:
242773007
result:
ok 1 number(s): "242773007"
Test #60:
score: 0
Accepted
time: 818ms
memory: 353940kb
input:
9911781 83845891 360130933
output:
158254305
result:
ok 1 number(s): "158254305"
Test #61:
score: 0
Accepted
time: 825ms
memory: 353776kb
input:
9916390 100404191 108138473
output:
103346432
result:
ok 1 number(s): "103346432"
Test #62:
score: 0
Accepted
time: 807ms
memory: 354608kb
input:
9974438 7828049 430399297
output:
76675277
result:
ok 1 number(s): "76675277"