QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#96526#5104. Guardians of the GallerymarcoskWA 70ms3804kbC++175.6kb2023-04-14 09:36:242023-04-14 09:36:25

Judging History

你现在查看的是最新测评结果

  • [2023-08-10 23:21:45]
  • System Update: QOJ starts to keep a history of the judgings of all the submissions.
  • [2023-04-14 09:36:25]
  • 评测
  • 测评结果:WA
  • 用时:70ms
  • 内存:3804kb
  • [2023-04-14 09:36:24]
  • 提交

answer

#include <bits/stdc++.h>
#define fst first
#define snd second
#define fore(i,a,b) for(int i=a,ThxDem=b;i<ThxDem;++i)
#define pb push_back
#define ALL(s) s.begin(),s.end()
#define FIN ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define SZ(s) int(s.size())
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> ii;

ld EPS=1e-11,DINF=1e9;
struct pt {
	ld x,y;
	pt(ld x, ld y):x(x),y(y){}
	pt(){}
	ld norm2(){return *this**this;}
	ld norm(){return sqrt(norm2());}
	bool operator==(pt p){return abs(x-p.x)<=EPS&&abs(y-p.y)<=EPS;}
	pt operator+(pt p){return pt(x+p.x,y+p.y);}
	pt operator-(pt p)const{return pt(x-p.x,y-p.y);}
	pt operator*(ld t){return pt(x*t,y*t);}
	pt operator/(ld t){return pt(x/t,y/t);}
	ld operator*(pt p){return x*p.x+y*p.y;}
	ld angle(pt p){return acos(*this*p/(norm()*p.norm()));}
	pt unit(){return *this/norm();}
	ld operator%(pt p){return x*p.y-y*p.x;}
	bool operator<(pt p)const{return x<p.x-EPS||(abs(x-p.x)<=EPS&&y<p.y-EPS);}
	bool left(pt p, pt q){return (q-p)%(*this-p)>EPS;}
	bool right(pt p, pt q){return (q-p)%(*this-p)<-EPS;}
	bool in(pt p, pt q){return abs((q-p)%(*this-p))<EPS;}
	pt rot(pt r){return pt(*this%r,*this*r);}
	pt rot(ld a){return rot(pt(sin(a),cos(a)));}
};
pt ccw90(1,0);
pt cw90(-1,0);
int sgn(ld x){return x<-EPS?-1:x>EPS;}

struct Cmp {
	pt r;
	Cmp(pt r):r(r){}
	int cuad(const pt &a)const {
		if(a.x>EPS&&a.y>=-EPS)return 0;
		if(a.x<=EPS&&a.y>EPS)return 1;
		if(a.x<-EPS&&a.y<=EPS)return 2;
		if(a.x>=-EPS&&a.y<-EPS)return 3;
		return -1;
	}
	bool cmp(const pt& p1, const pt& p2)const {
		int c1=cuad(p1),c2=cuad(p2);
		ld me=p1.y*p2.x;
		ld he=p1.x*p2.y;
		pt pp1=p1, pp2=p2;
		if(c1==c2)return me+EPS<he || (abs(me-he)<EPS && pp1.norm()+EPS<pp2.norm());
		return c1<c2;
	}
	bool operator()(const pt& p1, const pt& p2)const {
		return cmp(p1-r,p2-r);
	}
};

struct ln {
	pt p,pq;
	ln(pt p, pt q):p(p),pq(q-p){}
	ln(){}
	bool operator/(ln l){return abs(pq.unit()%l.pq.unit())<=EPS;} // 2D
	pt operator^(ln l){
		if(*this/l)return pt(DINF,DINF);
		pt r=l.p+l.pq*((p-l.p)%pq/(l.pq%pq));
		return r;
	}
	pt proj(pt r){return p+pq*((r-p)*pq/pq.norm2());}
};

bool seghas(pt a, pt b, pt c){
	ld me=(a-b).norm();
	ld he=(a-c).norm()+(b-c).norm();
	return abs(me-he)<EPS;
}

bool has(vector<pt> &p, pt q){
	int n=SZ(p);
	fore(i,0,n)if(seghas(p[i],p[(i+1)%n],q))return true;
	int cnt=0;
	fore(i,0,n){
		int j=(i+1)%n;
		int k=sgn((q-p[j])%(p[i]-p[j]));
		int u=sgn(p[i].y-q.y),v=sgn(p[j].y-q.y);
		if(k>0&&u<0&&v>=0)cnt++;
		if(k<0&&v<0&&u>=0)cnt--;
	}
	return cnt!=0;
}

ld getdist(pt p, pt dir, vector<pt> &v){
	if(!has(v, p+(dir*1e-5))) return 0;
	
	int n=SZ(v);
	ld lef=1e18,rig=1e18;
	pt asd=p+dir.rot(cw90);
	
	fore(i,0,n){
		pt a=v[i], b=v[(i+1)%n];
		
		if(abs(dir%(b-a)) < EPS){
			if(p.in(a,b)){
				if(a==p) rig=0;
				if(b==p) lef=0;
				if(a.left(p,asd) && b.left(p,asd)){
					if((a-p).norm() < (b-p).norm()) rig=min(rig, (a-p).norm());
					else lef=min(lef, (b-p).norm());
				}
			}		
			continue;
		}
		
		pt to=ln(a,b)^ln(p,p+dir);
		pt asd=p+dir.rot(cw90);
		if(!seghas(a,b,to) || to.right(p,asd)) continue;
		
		//interseco con el segmento
		ld ds=(to-p).norm();
		
		if(to==p)continue;
		
		if(to==a){
			if(b.right(p,p+dir)) rig=min(rig,ds);
			else lef=min(lef,ds);
		}
		
		else if(to==b){
			if(a.right(p,p+dir)) rig=min(rig,ds);
			else lef=min(lef,ds);
		}
		
		else{
			lef=min(lef,ds);
			rig=min(rig,ds);
		}
	}
	
	
	ld ans=max(lef,rig);
	return ans;
}

vector<pt> getbox(pt p, vector<pt> &v){
	auto vv=v;
	sort(ALL(vv),Cmp(p));
	
	vector<pt> ans;

	fore(i,0,SZ(vv)){
		if(i && vv[i].in(vv[i-1],p))continue;
		
		pt q=vv[i];
		pt dir=(q-p).unit();
		
		ld now=getdist(p, dir, v);
		pt me=p+(dir*now);
		
		ld he=(vv[i]-p).norm();
		if(he<=now+EPS){
			int pos=-1,n=SZ(v);
			fore(j,0,n) if(v[j]==vv[i]) pos=(j-1+n)%n;
			if(!v[pos].left(p,vv[i])) swap(me,q);
			ans.pb(me);
			ans.pb(q);
		}
		else{
			ans.pb(me);
		}
	}
	
	ans.erase(unique(ALL(ans)),ans.end());
	
	return ans;
}

pt getdir(pt a, pt b, pt c){
	pt pr=ln(a,b).proj(c);
	if(seghas(a,b,pr)) return pr;
	else if((a-c).norm() < (b-c).norm()) return a;
	return b;
}

const int MAXN=110;
vector<pair<int,ld>> g[MAXN];
ld bst[MAXN];

int main(){FIN;
	int n; cin>>n;
	vector<pt> v(n);
	fore(i,0,n) cin>>v[i].x>>v[i].y;
	pt me,he; cin>>me.x>>me.y>>he.x>>he.y;
	
	//entre vertices del poligono
	fore(i,0,n) fore(j,0,n) if(i!=j){
		ld mx=getdist(v[i], (v[j]-v[i]).unit(), v);
		ld he=(v[j]-v[i]).norm();
		if(he<=mx+EPS){
			g[i].pb({j,he});
		}
	}
	
	//desde me hasta i
	fore(i,0,n){
		ld mx=getdist(me, (v[i]-me).unit(), v);
		ld he=(me-v[i]).norm();
		if(he<=mx+EPS){
			g[n].pb({i,he});
		}
	}
	
	vector<pt> box=getbox(he,v);
	
	auto vv=v;
	vv.pb(me);
	fore(i,0,n+1){
		bst[i]=1e18;
		
		if(has(box,vv[i])){
			bst[i]=0;
			continue;
		}
		
		fore(j,0,SZ(box)){
			pt p=box[j],q=box[(j+1)%SZ(box)];
			pt to=getdir(p,q,vv[i]);
			ld mx=getdist(vv[i], (to-vv[i]).unit(), v);
			ld he=(to-vv[i]).norm();
			if(he<=mx+EPS) bst[i]=min(bst[i],he);
		}
	}
	
	
	
	fore(i,0,n+1) g[i].pb({n+1,bst[i]});
	
	priority_queue<pair<ld,int>, vector<pair<ld,int>>, greater<pair<ld,int>>> q;
	vector<ld> ans(n+2,1e18);
	q.push({0,n});
	ans[n]=0;
	
	while(SZ(q)){
		ld d=q.top().fst; int pos=q.top().snd; q.pop();
		if(abs(ans[pos]-d)>EPS) continue;
		for(auto x:g[pos]){
			ld nd=d+x.snd;
			if(nd+EPS<ans[x.fst]){
				ans[x.fst]=nd;
				q.push({nd,x.fst});
			}
		}
	}
	
	ld res=1e18;
	
	cout<<fixed<<setprecision(10)<<ans[n+1]<<"\n";
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3804kb

input:

15
13 7
20 20
39 20
49 7
73 13
100 5
117 38
98 20
80 20
66 40
68 20
51 20
41 39
22 48
2 39
10 20
104 20

output:

29.0000000000

result:

ok found '29.0000000', expected '29.0000000', error '0.0000000'

Test #2:

score: 0
Accepted
time: 1ms
memory: 3708kb

input:

16
39 2
48 22
39 41
20 51
20 68
40 66
20 80
20 98
38 117
5 100
13 73
7 49
19 39
20 23
20 20
7 13
20 10
20 104

output:

13.0000000000

result:

ok found '13.0000000', expected '13.0000000', error '0.0000000'

Test #3:

score: 0
Accepted
time: 2ms
memory: 3764kb

input:

16
13 33
20 60
23 66
39 97
49 105
73 166
100 205
117 272
98 216
80 180
66 172
68 156
51 122
41 121
22 92
2 44
10 40
104 228

output:

140.8722825825

result:

ok found '140.8722826', expected '140.8722826', error '0.0000000'

Test #4:

score: 0
Accepted
time: 2ms
memory: 3628kb

input:

16
64 17
50 28
67 23
65 18
77 4
88 20
78 10
70 29
61 28
47 32
54 17
43 13
35 20
41 30
27 20
42 6
81 12
33 23

output:

64.2045377025

result:

ok found '64.2045377', expected '64.2045377', error '0.0000000'

Test #5:

score: 0
Accepted
time: 0ms
memory: 3760kb

input:

16
64 17
50 28
67 23
65 18
77 4
88 20
78 10
70 29
61 28
47 32
54 17
43 13
35 20
41 30
27 20
42 6
33 23
81 12

output:

72.2834980412

result:

ok found '72.2834980', expected '72.2834980', error '0.0000000'

Test #6:

score: 0
Accepted
time: 2ms
memory: 3792kb

input:

7
76 8
389 215
691 19
407 331
489 397
300 403
363 334
126 60
393 370

output:

6.6579177565

result:

ok found '6.6579178', expected '6.6579178', error '0.0000000'

Test #7:

score: 0
Accepted
time: 2ms
memory: 3700kb

input:

3
0 1000
1000 0
1000 1000
567 578
589 601

output:

0.0000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #8:

score: 0
Accepted
time: 2ms
memory: 3788kb

input:

3
0 1000
0 0
1000 0
366 366
367 366

output:

0.0000000000

result:

ok found '0.0000000', expected '0.0000000', error '-0.0000000'

Test #9:

score: 0
Accepted
time: 2ms
memory: 3656kb

input:

5
50 93
278 178
199 300
596 362
208 519
421 388
142 153

output:

175.1697593917

result:

ok found '175.1697594', expected '175.1697594', error '0.0000000'

Test #10:

score: 0
Accepted
time: 0ms
memory: 3688kb

input:

7
50 93
278 178
199 300
401 312
483 162
596 362
208 519
488 252
142 153

output:

289.6821398769

result:

ok found '289.6821399', expected '289.6821399', error '0.0000000'

Test #11:

score: 0
Accepted
time: 2ms
memory: 3704kb

input:

8
10 10
40 25
20 25
20 35
12 23
30 23
10 20
5 40
15 15
19 26

output:

25.0000000000

result:

ok found '25.0000000', expected '25.0000000', error '0.0000000'

Test #12:

score: 0
Accepted
time: 2ms
memory: 3640kb

input:

9
5 1000
6 3
5 999
0 1000
0 0
500 2
500 0
1000 0
1000 1000
1 4
993 1

output:

5.1010479070

result:

ok found '5.1010479', expected '5.1010479', error '0.0000000'

Test #13:

score: 0
Accepted
time: 70ms
memory: 3780kb

input:

100
695 43
538 87
463 208
597 329
750 306
812 481
960 555
912 344
983 450
987 573
994 852
941 985
801 855
792 800
849 806
792 696
924 701
939 672
710 546
722 668
723 807
715 767
624 524
634 554
547 503
357 352
627 458
651 495
937 558
932 545
864 509
753 489
509 397
341 335
300 495
199 528
380 688
48...

output:

1695.1865730236

result:

ok found '1695.1865730', expected '1695.1865730', error '0.0000000'

Test #14:

score: 0
Accepted
time: 0ms
memory: 3708kb

input:

20
840 854
839 45
996 905
959 938
852 938
730 423
425 493
136 481
213 778
527 740
691 941
22 830
83 313
462 155
636 21
462 321
360 324
238 422
402 492
806 406
952 822
410 838

output:

1424.3842014548

result:

ok found '1424.3842015', expected '1424.3842015', error '0.0000000'

Test #15:

score: -100
Wrong Answer
time: 30ms
memory: 3704kb

input:

74
89 395
52 622
124 832
115 698
95 598
199 491
190 356
191 398
132 315
94 371
34 221
91 0
153 139
220 465
260 283
312 30
409 15
338 50
343 52
437 69
359 89
332 213
377 505
375 396
405 199
657 90
658 50
360 50
618 23
642 7
824 191
688 417
795 227
709 286
662 321
646 175
485 210
381 357
420 329
441 3...

output:

982.0795880709

result:

wrong answer 1st numbers differ - expected: '2036.7557099', found: '982.0795881', error = '0.5178216'