QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#93768 | #6179. 最大平方问题 | Renshey | 100 ✓ | 607ms | 12616kb | C++23 | 3.8kb | 2023-04-02 10:32:58 | 2023-04-02 10:33:02 |
Judging History
answer
#include <bits/stdc++.h>
const int maxn = 1200000 + 10;
int a, b, c, n, m, Ans = 1;
int pr[maxn], tot; bool flag[maxn];
long long f[maxn], g[maxn], Delta;
std::unordered_map<long long, int> cnt;
inline long long add (long long x, long long y, long long mod) {return x + y >= mod ? x + y - mod : x + y;}
inline long long mul (long long x, long long y, long long mod) {return (__int128)x * y % mod;}
inline long long power (long long x, long long y, long long mod)
{
long long z = 1; x %= mod;
for (; y; y >>= 1, x = mul(x, x, mod)) if (y & 1) z = mul(z, x, mod);
return z;
}
inline long long Rand (long long l, long long r)
{
long long x = 0;
for (int i = 0; i < 4; i++) x = (x << 15) | (rand() & 32767);
return x % (r - l + 1) + l;
}
namespace Quadratic_Residue
{
long long p, w, r;
struct Complex {long long real, imag;} ;
inline Complex operator * (const Complex &a, const Complex &b)
{
Complex c = (Complex){0, 0};
c.real = add(mul(a.real, b.real, p), mul(mul(a.imag, b.imag, p), r, p), p);
c.imag = add(mul(a.real, b.imag, p), mul(a.imag, b.real, p), p);
return c;
}
inline Complex Power (Complex x, long long y)
{
Complex z = (Complex){1, 0};
for (; y; y >>= 1, x = x * x) if (y & 1) z = z * x;
return z;
}
inline long long L (long long n)
{
if (n == 0) return 0;
return power(n, (p - 1) / 2, p);
}
inline void init (long long q) {p = q;}
inline long long Sqrt (long long n)
{
if (n == 0) return 0;
if (L(n) == p - 1) return -1;
do w = Rand(0, p - 1), r = add(mul(w, w, p), p - n, p);
while (L(r) != p - 1) ;
return Power((Complex){w, 1}, (p + 1) / 2).real;
}
}
inline void Divide (long long &x, long long p, int w)
{
while (x % p == 0) x /= p, (w && cnt[p]++);
}
inline void solve (long long p)
{
if (p == 2 or a % p == 0)
{
for (int j = 1; j <= n; j++) Divide(f[j], p, 1);
}
else
{
Quadratic_Residue::init(p);
long long r = Quadratic_Residue::Sqrt((Delta % p + p) % p);
if (~r)
{
long long inv = power(2 * a, p - 2, p);
long long r1 = mul(p + p - b % p - r, inv, p);
long long r2 = mul(p + p - b % p + r, inv, p);
for (long long j = r1; j <= n; j += p) if (j) Divide(f[j], p, 1);
for (long long j = r2; j <= n; j += p) if (j) Divide(f[j], p, 1);
}
}
}
signed main ()
{
scanf("%d%d%d%d", &a, &b, &c, &n);
for (int i = 1; i <= n; i++) f[i] = 1LL * a * i * i + 1LL * b * i + c;
for (int i = 1; i <= 2 * n; i++) g[i] = 1LL * a * i + b;
m = std::max(2 * n, (int)std::max(pow(f[n], 1.0 / 3), sqrt(g[2 * n])));
for (int i = 2; i <= m; i++)
{
if (!flag[i]) pr[++tot] = i;
for (int j = 1; j <= tot and i * pr[j] <= m; j++)
{
flag[i * pr[j]] = true;
if (i % pr[j] == 0) break;
}
}
Delta = 1LL * b * b - 4LL * a * c;
for (int i = 1; i <= tot; i++)
{
int p = pr[i]; solve(p);
if (a % p == 0 or b % p == 0)
{
for (int j = 1; j <= 2 * n; j++) Divide(g[j], p, 0);
}
else
{
int r = 1LL * (p - b % p) * power(a, p - 2, p) % p;
for (int j = r; j <= 2 * n; j += p) if (j) Divide(g[j], p, 0);
}
}
g[0] = 1; std::sort(g + 1, g + 2 * n + 1);
for (int i = 1; i <= 2 * n; i++) if (g[i] > g[i - 1]) solve(g[i]);
for (int i = 1; i <= n; i++) if (f[i] > 1)
{
long long x = sqrt(f[i]);
if (x * x == f[i]) cnt[x] += 2;
}
for (auto p: cnt) Ans = 1LL * Ans * power(p.first, p.second / 2 * 2, 998244353) % 998244353;
return !printf("%d\n", Ans);
}
詳細信息
Test #1:
score: 5
Accepted
time: 0ms
memory: 5784kb
input:
17 3 17 14
output:
123798013
result:
ok 1 number(s): "123798013"
Test #2:
score: 5
Accepted
time: 0ms
memory: 5908kb
input:
1 18 0 6
output:
2073600
result:
ok 1 number(s): "2073600"
Test #3:
score: 5
Accepted
time: 0ms
memory: 5836kb
input:
20 6 20 14
output:
315851899
result:
ok 1 number(s): "315851899"
Test #4:
score: 5
Accepted
time: 3ms
memory: 5956kb
input:
81 190 40 125
output:
924770602
result:
ok 1 number(s): "924770602"
Test #5:
score: 5
Accepted
time: 1ms
memory: 5832kb
input:
108 31 110 122
output:
319532761
result:
ok 1 number(s): "319532761"
Test #6:
score: 5
Accepted
time: 2ms
memory: 5924kb
input:
988 194 1412 934
output:
871618879
result:
ok 1 number(s): "871618879"
Test #7:
score: 5
Accepted
time: 5ms
memory: 5900kb
input:
1956 1305 92 1061
output:
681879967
result:
ok 1 number(s): "681879967"
Test #8:
score: 5
Accepted
time: 26ms
memory: 6048kb
input:
75955 165029 149078 5607
output:
739160804
result:
ok 1 number(s): "739160804"
Test #9:
score: 5
Accepted
time: 15ms
memory: 6072kb
input:
3223 4143 3383 4499
output:
139873119
result:
ok 1 number(s): "139873119"
Test #10:
score: 5
Accepted
time: 28ms
memory: 6152kb
input:
9257 3632 1736 9497
output:
158679485
result:
ok 1 number(s): "158679485"
Test #11:
score: 5
Accepted
time: 56ms
memory: 6328kb
input:
13657 8517 9780 16829
output:
499148359
result:
ok 1 number(s): "499148359"
Test #12:
score: 5
Accepted
time: 33ms
memory: 6248kb
input:
152794 105986 145639 8507
output:
432311896
result:
ok 1 number(s): "432311896"
Test #13:
score: 5
Accepted
time: 0ms
memory: 5828kb
input:
2209 13866 42748 227
output:
576767941
result:
ok 1 number(s): "576767941"
Test #14:
score: 5
Accepted
time: 10ms
memory: 5864kb
input:
14279 7290 25915 2265
output:
173729704
result:
ok 1 number(s): "173729704"
Test #15:
score: 5
Accepted
time: 94ms
memory: 6528kb
input:
24703 6569 26356 26534
output:
108700579
result:
ok 1 number(s): "108700579"
Test #16:
score: 5
Accepted
time: 57ms
memory: 6136kb
input:
187348 185285 76358 13718
output:
425402711
result:
ok 1 number(s): "425402711"
Test #17:
score: 5
Accepted
time: 63ms
memory: 6132kb
input:
189507 133399 143282 13930
output:
608644351
result:
ok 1 number(s): "608644351"
Test #18:
score: 5
Accepted
time: 607ms
memory: 12616kb
input:
102698 162019 98595 137546
output:
388084925
result:
ok 1 number(s): "388084925"
Test #19:
score: 5
Accepted
time: 60ms
memory: 6268kb
input:
152381 90362 151048 15578
output:
413943175
result:
ok 1 number(s): "413943175"
Test #20:
score: 5
Accepted
time: 226ms
memory: 7496kb
input:
34402 49259 74598 64198
output:
733372582
result:
ok 1 number(s): "733372582"