QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#934372#10226. Tree FlipHoMaMaOvO (Riku Kawasaki, Masaki Nishimoto, Yui Hosaka)#AC ✓93ms30876kbC++2339.4kb2025-03-14 18:00:522025-03-14 18:00:52

Judging History

This is the latest submission verdict.

  • [2025-03-14 18:00:52]
  • Judged
  • Verdict: AC
  • Time: 93ms
  • Memory: 30876kb
  • [2025-03-14 18:00:52]
  • Submitted

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); }
void TIDAK(bool t = 1) { YA(!t); }
#line 3 "main.cpp"

#line 2 "library/graph/tree.hpp"

#line 2 "library/ds/hashmap.hpp"

// u64 -> Val
template <typename Val>
struct HashMap {
  // n は入れたいものの個数で ok
  HashMap(u32 n = 0) { build(n); }
  void build(u32 n) {
    u32 k = 8;
    while (k < n * 2) k *= 2;
    cap = k / 2, mask = k - 1;
    key.resize(k), val.resize(k), used.assign(k, 0);
  }

  // size を保ったまま. size=0 にするときは build すること.
  void clear() {
    used.assign(len(used), 0);
    cap = (mask + 1) / 2;
  }
  int size() { return len(used) / 2 - cap; }

  int index(const u64& k) {
    int i = 0;
    for (i = hash(k); used[i] && key[i] != k; i = (i + 1) & mask) {}
    return i;
  }

  Val& operator[](const u64& k) {
    if (cap == 0) extend();
    int i = index(k);
    if (!used[i]) { used[i] = 1, key[i] = k, val[i] = Val{}, --cap; }
    return val[i];
  }

  Val get(const u64& k, Val default_value) {
    int i = index(k);
    return (used[i] ? val[i] : default_value);
  }

  bool count(const u64& k) {
    int i = index(k);
    return used[i] && key[i] == k;
  }

  // f(key, val)
  template <typename F>
  void enumerate_all(F f) {
    FOR(i, len(used)) if (used[i]) f(key[i], val[i]);
  }

private:
  u32 cap, mask;
  vc<u64> key;
  vc<Val> val;
  vc<bool> used;

  u64 hash(u64 x) {
    static const u64 FIXED_RANDOM = std::chrono::steady_clock::now().time_since_epoch().count();
    x += FIXED_RANDOM;
    x = (x ^ (x >> 30)) * 0xbf58476d1ce4e5b9;
    x = (x ^ (x >> 27)) * 0x94d049bb133111eb;
    return (x ^ (x >> 31)) & mask;
  }

  void extend() {
    vc<pair<u64, Val>> dat;
    dat.reserve(len(used) / 2 - cap);
    FOR(i, len(used)) {
      if (used[i]) dat.eb(key[i], val[i]);
    }
    build(2 * len(dat));
    for (auto& [a, b]: dat) (*this)[a] = b;
  }
};
#line 3 "library/graph/base.hpp"

template <typename T>
struct Edge {
  int frm, to;
  T cost;
  int id;
};

template <typename T = int, bool directed = false>
struct Graph {
  static constexpr bool is_directed = directed;
  int N, M;
  using cost_type = T;
  using edge_type = Edge<T>;
  vector<edge_type> edges;
  vector<int> indptr;
  vector<edge_type> csr_edges;
  vc<int> vc_deg, vc_indeg, vc_outdeg;
  bool prepared;

  class OutgoingEdges {
  public:
    OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}

    const edge_type* begin() const {
      if (l == r) { return 0; }
      return &G->csr_edges[l];
    }

    const edge_type* end() const {
      if (l == r) { return 0; }
      return &G->csr_edges[r];
    }

  private:
    const Graph* G;
    int l, r;
  };

  bool is_prepared() { return prepared; }

  Graph() : N(0), M(0), prepared(0) {}
  Graph(int N) : N(N), M(0), prepared(0) {}

  void build(int n) {
    N = n, M = 0;
    prepared = 0;
    edges.clear();
    indptr.clear();
    csr_edges.clear();
    vc_deg.clear();
    vc_indeg.clear();
    vc_outdeg.clear();
  }

  void add(int frm, int to, T cost = 1, int i = -1) {
    assert(!prepared);
    assert(0 <= frm && 0 <= to && to < N);
    if (i == -1) i = M;
    auto e = edge_type({frm, to, cost, i});
    edges.eb(e);
    ++M;
  }

#ifdef FASTIO
  // wt, off
  void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }

  void read_graph(int M, bool wt = false, int off = 1) {
    for (int m = 0; m < M; ++m) {
      INT(a, b);
      a -= off, b -= off;
      if (!wt) {
        add(a, b);
      } else {
        T c;
        read(c);
        add(a, b, c);
      }
    }
    build();
  }
#endif

  void build() {
    assert(!prepared);
    prepared = true;
    indptr.assign(N + 1, 0);
    for (auto&& e: edges) {
      indptr[e.frm + 1]++;
      if (!directed) indptr[e.to + 1]++;
    }
    for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }
    auto counter = indptr;
    csr_edges.resize(indptr.back() + 1);
    for (auto&& e: edges) {
      csr_edges[counter[e.frm]++] = e;
      if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});
    }
  }

  OutgoingEdges operator[](int v) const {
    assert(prepared);
    return {this, indptr[v], indptr[v + 1]};
  }

  vc<int> deg_array() {
    if (vc_deg.empty()) calc_deg();
    return vc_deg;
  }

  pair<vc<int>, vc<int>> deg_array_inout() {
    if (vc_indeg.empty()) calc_deg_inout();
    return {vc_indeg, vc_outdeg};
  }

  int deg(int v) {
    if (vc_deg.empty()) calc_deg();
    return vc_deg[v];
  }

  int in_deg(int v) {
    if (vc_indeg.empty()) calc_deg_inout();
    return vc_indeg[v];
  }

  int out_deg(int v) {
    if (vc_outdeg.empty()) calc_deg_inout();
    return vc_outdeg[v];
  }

#ifdef FASTIO
  void debug() {
    print("Graph");
    if (!prepared) {
      print("frm to cost id");
      for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);
    } else {
      print("indptr", indptr);
      print("frm to cost id");
      FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);
    }
  }
#endif

  vc<int> new_idx;
  vc<bool> used_e;

  // G における頂点 V[i] が、新しいグラフで i になるようにする
  // {G, es}
  // sum(deg(v)) の計算量になっていて、
  // 新しいグラフの n+m より大きい可能性があるので注意
  Graph<T, directed> rearrange(vc<int> V, bool keep_eid = 0) {
    if (len(new_idx) != N) new_idx.assign(N, -1);
    int n = len(V);
    FOR(i, n) new_idx[V[i]] = i;
    Graph<T, directed> G(n);
    vc<int> history;
    FOR(i, n) {
      for (auto&& e: (*this)[V[i]]) {
        if (len(used_e) <= e.id) used_e.resize(e.id + 1);
        if (used_e[e.id]) continue;
        int a = e.frm, b = e.to;
        if (new_idx[a] != -1 && new_idx[b] != -1) {
          history.eb(e.id);
          used_e[e.id] = 1;
          int eid = (keep_eid ? e.id : -1);
          G.add(new_idx[a], new_idx[b], e.cost, eid);
        }
      }
    }
    FOR(i, n) new_idx[V[i]] = -1;
    for (auto&& eid: history) used_e[eid] = 0;
    G.build();
    return G;
  }

  Graph<T, true> to_directed_tree(int root = -1) {
    if (root == -1) root = 0;
    assert(!is_directed && prepared && M == N - 1);
    Graph<T, true> G1(N);
    vc<int> par(N, -1);
    auto dfs = [&](auto& dfs, int v) -> void {
      for (auto& e: (*this)[v]) {
        if (e.to == par[v]) continue;
        par[e.to] = v, dfs(dfs, e.to);
      }
    };
    dfs(dfs, root);
    for (auto& e: edges) {
      int a = e.frm, b = e.to;
      if (par[a] == b) swap(a, b);
      assert(par[b] == a);
      G1.add(a, b, e.cost);
    }
    G1.build();
    return G1;
  }

  HashMap<int> MP_FOR_EID;

  int get_eid(u64 a, u64 b) {
    if (len(MP_FOR_EID) == 0) {
      MP_FOR_EID.build(N - 1);
      for (auto& e: edges) {
        u64 a = e.frm, b = e.to;
        u64 k = to_eid_key(a, b);
        MP_FOR_EID[k] = e.id;
      }
    }
    return MP_FOR_EID.get(to_eid_key(a, b), -1);
  }

  u64 to_eid_key(u64 a, u64 b) {
    if (!directed && a > b) swap(a, b);
    return N * a + b;
  }

private:
  void calc_deg() {
    assert(vc_deg.empty());
    vc_deg.resize(N);
    for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;
  }

  void calc_deg_inout() {
    assert(vc_indeg.empty());
    vc_indeg.resize(N);
    vc_outdeg.resize(N);
    for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }
  }
};
#line 4 "library/graph/tree.hpp"

// HLD euler tour をとっていろいろ。
template <typename GT>
struct Tree {
  using Graph_type = GT;
  GT &G;
  using WT = typename GT::cost_type;
  int N;
  vector<int> LID, RID, head, V, parent, VtoE;
  vc<int> depth;
  vc<WT> depth_weighted;

  Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }

  void build(int r = 0, bool hld = 1) {
    if (r == -1) return; // build を遅延したいとき
    N = G.N;
    LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);
    V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);
    depth.assign(N, -1), depth_weighted.assign(N, 0);
    assert(G.is_prepared());
    int t1 = 0;
    dfs_sz(r, -1, hld);
    dfs_hld(r, t1);
  }

  void dfs_sz(int v, int p, bool hld) {
    auto &sz = RID;
    parent[v] = p;
    depth[v] = (p == -1 ? 0 : depth[p] + 1);
    sz[v] = 1;
    int l = G.indptr[v], r = G.indptr[v + 1];
    auto &csr = G.csr_edges;
    // 使う辺があれば先頭にする
    for (int i = r - 2; i >= l; --i) {
      if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);
    }
    int hld_sz = 0;
    for (int i = l; i < r; ++i) {
      auto e = csr[i];
      if (depth[e.to] != -1) continue;
      depth_weighted[e.to] = depth_weighted[v] + e.cost;
      VtoE[e.to] = e.id;
      dfs_sz(e.to, v, hld);
      sz[v] += sz[e.to];
      if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }
    }
  }

  void dfs_hld(int v, int &times) {
    LID[v] = times++;
    RID[v] += LID[v];
    V[LID[v]] = v;
    bool heavy = true;
    for (auto &&e: G[v]) {
      if (depth[e.to] <= depth[v]) continue;
      head[e.to] = (heavy ? head[v] : e.to);
      heavy = false;
      dfs_hld(e.to, times);
    }
  }

  vc<int> heavy_path_at(int v) {
    vc<int> P = {v};
    while (1) {
      int a = P.back();
      for (auto &&e: G[a]) {
        if (e.to != parent[a] && head[e.to] == v) {
          P.eb(e.to);
          break;
        }
      }
      if (P.back() == a) break;
    }
    return P;
  }

  int heavy_child(int v) {
    int k = LID[v] + 1;
    if (k == N) return -1;
    int w = V[k];
    return (parent[w] == v ? w : -1);
  }

  vc<int> memo_tail;

  int tail(int v) {
    if (memo_tail.empty()) {
      memo_tail.assign(N, -1);
      FOR_R(i, N) {
        int v = V[i];
        int w = heavy_child(v);
        memo_tail[v] = (w == -1 ? v : memo_tail[w]);
      }
    }
    return memo_tail[v];
  }

  int e_to_v(int eid) {
    auto e = G.edges[eid];
    return (parent[e.frm] == e.to ? e.frm : e.to);
  }
  int v_to_e(int v) { return VtoE[v]; }
  int get_eid(int u, int v) {
    if (parent[u] != v) swap(u, v);
    assert(parent[u] == v);
    return VtoE[u];
  }

  int ELID(int v) { return 2 * LID[v] - depth[v]; }
  int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }

  // 目標地点へ進む個数が k
  int LA(int v, int k) {
    assert(k <= depth[v]);
    while (1) {
      int u = head[v];
      if (LID[v] - k >= LID[u]) return V[LID[v] - k];
      k -= LID[v] - LID[u] + 1;
      v = parent[u];
    }
  }
  int la(int u, int v) { return LA(u, v); }

  int LCA(int u, int v) {
    for (;; v = parent[head[v]]) {
      if (LID[u] > LID[v]) swap(u, v);
      if (head[u] == head[v]) return u;
    }
  }

  int meet(int a, int b, int c) { return LCA(a, b) ^ LCA(a, c) ^ LCA(b, c); }
  int lca(int u, int v) { return LCA(u, v); }

  int subtree_size(int v, int root = -1) {
    if (root == -1) return RID[v] - LID[v];
    if (v == root) return N;
    int x = jump(v, root, 1);
    if (in_subtree(v, x)) return RID[v] - LID[v];
    return N - RID[x] + LID[x];
  }

  int dist(int a, int b) {
    int c = LCA(a, b);
    return depth[a] + depth[b] - 2 * depth[c];
  }

  WT dist_weighted(int a, int b) {
    int c = LCA(a, b);
    return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];
  }

  // a is in b
  bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }

  int jump(int a, int b, ll k) {
    if (k == 1) {
      if (a == b) return -1;
      return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);
    }
    int c = LCA(a, b);
    int d_ac = depth[a] - depth[c];
    int d_bc = depth[b] - depth[c];
    if (k > d_ac + d_bc) return -1;
    if (k <= d_ac) return LA(a, k);
    return LA(b, d_ac + d_bc - k);
  }

  vc<int> collect_child(int v) {
    vc<int> res;
    for (auto &&e: G[v])
      if (e.to != parent[v]) res.eb(e.to);
    return res;
  }

  vc<int> collect_light(int v) {
    vc<int> res;
    bool skip = true;
    for (auto &&e: G[v])
      if (e.to != parent[v]) {
        if (!skip) res.eb(e.to);
        skip = false;
      }
    return res;
  }

  vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {
    // [始点, 終点] の"閉"区間列。
    vc<pair<int, int>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        down.eb(LID[head[v]], LID[v]);
        v = parent[head[v]];
      } else {
        up.eb(LID[u], LID[head[u]]);
        u = parent[head[u]];
      }
    }
    if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);
    elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);
    reverse(all(down));
    up.insert(up.end(), all(down));
    return up;
  }

  // 辺の列の情報 (frm,to,str)
  // str = "heavy_up", "heavy_down", "light_up", "light_down"
  vc<tuple<int, int, string>> get_path_decomposition_detail(int u, int v) {
    vc<tuple<int, int, string>> up, down;
    while (1) {
      if (head[u] == head[v]) break;
      if (LID[u] < LID[v]) {
        if (v != head[v]) down.eb(head[v], v, "heavy_down"), v = head[v];
        down.eb(parent[v], v, "light_down"), v = parent[v];
      } else {
        if (u != head[u]) up.eb(u, head[u], "heavy_up"), u = head[u];
        up.eb(u, parent[u], "light_up"), u = parent[u];
      }
    }
    if (LID[u] < LID[v]) down.eb(u, v, "heavy_down");
    elif (LID[v] < LID[u]) up.eb(u, v, "heavy_up");
    reverse(all(down));
    concat(up, down);
    return up;
  }

  vc<int> restore_path(int u, int v) {
    vc<int> P;
    for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {
      if (a <= b) {
        FOR(i, a, b + 1) P.eb(V[i]);
      } else {
        FOR_R(i, b, a + 1) P.eb(V[i]);
      }
    }
    return P;
  }

  // path [a,b] と [c,d] の交わり. 空ならば {-1,-1}.
  // https://codeforces.com/problemset/problem/500/G
  pair<int, int> path_intersection(int a, int b, int c, int d) {
    int ab = lca(a, b), ac = lca(a, c), ad = lca(a, d);
    int bc = lca(b, c), bd = lca(b, d), cd = lca(c, d);
    int x = ab ^ ac ^ bc, y = ab ^ ad ^ bd; // meet(a,b,c), meet(a,b,d)
    if (x != y) return {x, y};
    int z = ac ^ ad ^ cd;
    if (x != z) x = -1;
    return {x, x};
  }

  // uv path 上で check(v) を満たす最後の v
  // なければ (つまり check(v) が ng )-1
  template <class F>
  int max_path(F check, int u, int v) {
    if (!check(u)) return -1;
    auto pd = get_path_decomposition(u, v, false);
    for (auto [a, b]: pd) {
      if (!check(V[a])) return u;
      if (check(V[b])) {
        u = V[b];
        continue;
      }
      int c = binary_search([&](int c) -> bool { return check(V[c]); }, a, b, 0);
      return V[c];
    }
    return u;
  }
};
#line 2 "library/graph/ds/static_toptree.hpp"

/*
参考 joitour tatyam
クラスタは根が virtual なもののみであるような簡易版
N 個の (頂+辺) をマージしていって,木全体+根から親への辺とする.
single(v) : v とその親辺を合わせたクラスタ
rake(L,R) : L の boundary を維持
compress(L,R)  (top-down) 順に x,y
*/
template <typename TREE>
struct Static_TopTree {
  int N;
  TREE &tree;
  vc<int> par, lch, rch, A, B; // A, B boundary (top-down)
  vc<bool> is_compress;

  Static_TopTree(TREE &tree) : tree(tree) { build(); }

  void build() {
    N = tree.N;
    par.assign(N, -1), lch.assign(N, -1), rch.assign(N, -1), A.assign(N, -1), B.assign(N, -1), is_compress.assign(N, 0);
    FOR(v, N) { A[v] = tree.parent[v], B[v] = v; }
    build_dfs(tree.V[0]);
    assert(len(par) == 2 * N - 1);
  }

  // 木全体での集約値を得る
  // single(v) : v とその親辺を合わせたクラスタ
  // rake(x, y, u, v) uv(top down) が boundary になるように rake (maybe v=-1)
  // compress(x,y,a,b,c)  (top-down) 順に (a,b] + (b,c]
  template <typename TREE_DP, typename F>
  typename TREE_DP::value_type tree_dp(F single) {
    using Data = typename TREE_DP::value_type;
    auto dfs = [&](auto &dfs, int k) -> Data {
      if (0 <= k && k < N) return single(k);
      Data x = dfs(dfs, lch[k]), y = dfs(dfs, rch[k]);
      if (is_compress[k]) {
        assert(B[lch[k]] == A[rch[k]]);
        return TREE_DP::compress(x, y);
      }
      return TREE_DP::rake(x, y);
    };
    return dfs(dfs, 2 * N - 2);
  }

private:
  int new_node(int l, int r, int a, int b, bool c) {
    int v = len(par);
    par.eb(-1), lch.eb(l), rch.eb(r), A.eb(a), B.eb(b), is_compress.eb(c);
    par[l] = par[r] = v;
    return v;
  }

  // height, node idx
  // compress 参考:https://atcoder.jp/contests/abc351/editorial/9910
  // ただし heavy path の選び方までは考慮しない
  pair<int, int> build_dfs(int v) {
    assert(tree.head[v] == v);
    auto path = tree.heavy_path_at(v);
    vc<pair<int, int>> stack;
    stack.eb(0, path[0]);
    auto merge_last_two = [&]() -> void {
      auto [h2, k2] = POP(stack);
      auto [h1, k1] = POP(stack);
      stack.eb(max(h1, h2) + 1, new_node(k1, k2, A[k1], B[k2], true));
    };

    FOR(i, 1, len(path)) {
      pqg<pair<int, int>> que;
      int k = path[i];
      que.emplace(0, k);
      for (auto &c: tree.collect_light(path[i - 1])) { que.emplace(build_dfs(c)); }
      while (len(que) >= 2) {
        auto [h1, i1] = POP(que);
        auto [h2, i2] = POP(que);
        if (i2 == k) swap(i1, i2);
        int i3 = new_node(i1, i2, A[i1], B[i1], false);
        if (k == i1) k = i3;
        que.emplace(max(h1, h2) + 1, i3);
      }
      stack.eb(POP(que));

      while (1) {
        int n = len(stack);
        if (n >= 3 && (stack[n - 3].fi == stack[n - 2].fi || stack[n - 3].fi <= stack[n - 1].fi)) {
          auto [h3, k3] = POP(stack);
          merge_last_two(), stack.eb(h3, k3);
        }
        elif (n >= 2 && stack[n - 2].fi <= stack[n - 1].fi) { merge_last_two(); }
        else break;
      }
    }
    while (len(stack) >= 2) { merge_last_two(); }
    return POP(stack);
  }
};
#line 2 "library/graph/ds/dynamic_rerooting_tree_dp.hpp"

/*
https://github.com/maspypy/library/blob/main/graph/ds/stt_dp_memo.png
rake: (a<-b], (a<-c] -> (a<-b].
rake2: (a->b], (a<-c] -> (a->b].
rake3: [a<-b), (a<-c] -> [a<-b). typically rake3==rake.
compress: (a<-b], (b<-c] -> (a<-c].
compress2: [a<-b), [b<-c) -> [a<-c). typically compress2(L,R) == compress(R,L).
*/
template <typename TREE, typename TREE_DP>
struct Dynamic_Rerooting_Tree_Dp {
  using X = typename TREE_DP::value_type;
  Static_TopTree<TREE> STT;
  vc<pair<X, X>> dp;

  template <typename F>
  Dynamic_Rerooting_Tree_Dp(TREE& tree, F f) : STT(tree) {
    assert(tree.V[0] == 0); // さぼり
    int N = tree.N;
    dp.resize(2 * N - 1);
    dp[0].fi = dp[0].se = TREE_DP::unit();
    // FOR(i, 1, N) dp[i] = f(i);
    FOR(i, N) dp[i] = f(i);
    FOR(i, N, 2 * N - 1) update(i);
  }

  // v と親を結ぶ辺. 親が virtual / 子が virtual
  void set(int v, pair<X, X> x) {
    // assert(v > 0);
    dp[v] = x;
    for (int i = STT.par[v]; i != -1; i = STT.par[i]) {
      SHOW("upd", i);
      update(i);
    }
  }

  X prod_all(int v) {
    int i = v;
    X a = dp[i].se, b = TREE_DP::unit(), c = TREE_DP::unit();
    SHOW(v);
    while (1) {
      int p = STT.par[i];
      if (p == -1) break;
      int l = STT.lch[p], r = STT.rch[p];
      SHOW(i, p, l, r, STT.is_compress[p]);
      a.out();
      b.out();
      c.out();
      if (STT.is_compress[p]) {
        if (l == i) {
          b = TREE_DP::compress(b, dp[r].fi);
        } else {
          SHOW(__LINE__);
          a = TREE_DP::compress2(dp[l].se, a);
          SHOW(__LINE__);
        }
      } else {
        if (STT.lch[p] == i) {
          if (a.type == 0) {
            b = TREE_DP::rake(b, dp[r].fi);
          } else {
            a = TREE_DP::rake2(a, dp[r].fi);
          }
        } else {
          if (a.type == 0) {
            c = TREE_DP::rake2(c, b);
            a = TREE_DP::unit();
            b = dp[l].fi;
          } else {
            SHOW(__LINE__, "------------");
            a.out();
            b.out();
            c.out();
            a = TREE_DP::rake3(a, b);
            SHOW("rake3 end");
            a.out();
            c = TREE_DP::compress2(a, c);
            a = TREE_DP::unit(), b = dp[l].fi;
            SHOW(__LINE__);
          }
        }
      }
      i = p;
    }
    a.out();
    b.out();
    c.out();
    a = TREE_DP::rake3(a, b);
    return TREE_DP::compress2(a, c);
  }

private:
  inline void update(int i) {
    auto& [L1, L2] = dp[STT.lch[i]];
    auto& [R1, R2] = dp[STT.rch[i]];
    if (STT.is_compress[i]) {
      dp[i] = {TREE_DP::compress(L1, R1), TREE_DP::compress2(L2, R2)};
    } else {
      dp[i] = {TREE_DP::rake(L1, R1), TREE_DP::rake2(L2, R1)};
    }
    SHOW(i, STT.lch[i], STT.rch[i]);
    dp[i].fi.out();
    dp[i].se.out();
  }
};
#line 6 "main.cpp"

/*
頂点ごとの操作回数とは根からの累積和の偶奇

virtual [L,R) or (L,R]

・この木よりも上での sum の偶奇
・real な頂点の vertex sum


real vertex の操作回数
新しい path sum (virtual)
*/

struct Data {
  int type;
  int a, b;
  int val;
  int path_sum;
  array<array<int, 2>, 2> dat;
  void out() {
#ifdef LOCAL
    print("type,a,b,val,pathsum=", type, a, b, val, path_sum);
    print("dat=", dat);
#endif
  }
};

struct TREE_DP {
  using value_type = Data;
  using X = value_type;
  static X unit() { return {0, 0, 0, 0, 0, {}}; }
  static X rake(X L, X R) {
    SHOW("rake", L.a, L.b, R.a, R.b);
    if (L.type == 0) return R;
    if (R.type == 0) return L;
    assert(L.a == R.a);
    X ANS;
    ANS.type = 1;
    ANS.val = L.val;
    ANS.a = L.a, ANS.b = L.b;
    ANS.path_sum = L.path_sum;
    FOR(a, 2) FOR(b, 2) { ANS.dat[a][b] = L.dat[a][b] + R.dat[a][b]; }
    ANS.out();
    return ANS;
  }
  static X compress(X L, X R) {
    SHOW("compress", L.a, L.b, R.a, R.b);
    if (L.type == 0) return R;
    if (R.type == 0) return L;
    assert(L.type == 1 && R.type == 1);
    assert(L.b == R.a);
    X ANS;
    ANS.type = 1;
    ANS.val = R.val;
    ANS.a = L.a, ANS.b = R.b;
    ANS.path_sum = L.path_sum + R.path_sum;

    FOR(a, 2) FOR(b, 2) {
      ANS.dat[a][b] = 0;
      ANS.dat[a][b] += L.dat[a][b];
      int x = (a + b + L.path_sum + L.val) % 2;
      ANS.dat[a][b] += R.dat[x][L.val];
    }
    ANS.out();
    return ANS;
  }
  static X rake2(X L, X R) {
    SHOW("rake2", L.a, L.b, R.a, R.b);
    if (L.type == 0) return R;
    if (R.type == 0) return L;
    assert(L.b == R.a);
    assert(L.type == 2 && R.type == 1);
    X ANS;
    ANS.type = 2;
    ANS.val = L.val;
    ANS.a = L.a, ANS.b = L.b;
    ANS.path_sum = L.path_sum;
    FOR(a, 2) FOR(b, 2) {
      ANS.dat[a][b] = 0;
      ANS.dat[a][b] += L.dat[a][b];
      int x = a + L.path_sum;
      ANS.dat[a][b] += R.dat[x % 2][b];
    }
    ANS.out();
    return ANS;
  }
  static X rake3(X L, X R) {
    SHOW("rake3", L.a, L.b, R.a, R.b);
    SHOW(L.type, R.type);
    if (L.type == 0) return R;
    if (R.type == 0) return L;
    assert(L.a == R.a);
    assert(L.type == 2 && R.type == 1);
    X ANS;
    ANS.type = 2;
    ANS.val = L.val;
    ANS.a = L.a, ANS.b = L.b;
    ANS.path_sum = L.path_sum;
    FOR(a, 2) FOR(b, 2) {
      ANS.dat[a][b] = 0;
      ANS.dat[a][b] += L.dat[a][b];
      ANS.dat[a][b] += R.dat[a][L.val];
    }
    ANS.out();
    return ANS;
  }
  static X compress2(X L, X R) {
    if (L.type == 0) return R;
    if (R.type == 0) return L;
    SHOW(__LINE__, L.type, R.type);
    L.out(), R.out();
    flush();
    assert(L.type == 2 && R.type == 2);
    assert(L.a == R.b);
    X ANS;
    ANS.type = 2;
    ANS.a = R.a, ANS.b = L.b;
    ANS.val = R.val;
    ANS.path_sum = L.path_sum + R.path_sum;
    FOR(a, 2) FOR(b, 2) {
      ANS.dat[a][b] = 0;
      ANS.dat[a][b] += R.dat[a][L.val];
      int x = (a + R.path_sum) % 2;
      ANS.dat[a][b] += L.dat[x][b];
    }
    ANS.out();
    return ANS;
  }
};

void solve() {
  LL(N, Q);
  VEC(int, A, N);
  Graph<int, 0> G(N);
  G.read_tree();
  Tree<decltype(G)> tree(G);

  // (L で追加で行う操作回数, virtual な側の初期状態)

  auto f = [&](int v) -> pair<Data, Data> {
    Data up, down;
    up.type = 1, down.type = 2;
    up.val = down.val = A[v];
    up.path_sum = down.path_sum = A[v];
    up.a = tree.parent[v];
    up.b = v;
    down.a = v;
    down.b = tree.parent[v];
    FOR(a, 2) FOR(b, 2) {
      up.dat[a][b] = (a + b + A[v]) % 2;
      down.dat[a][b] = (a + A[v]) % 2;
    }
    return {up, down};
  };
  Dynamic_Rerooting_Tree_Dp<decltype(tree), TREE_DP> X(tree, f);

  int root = 0;
  FOR(Q) {
    INT(t);
    INT(v);
    --v;
    if (t == 1) {
      // flip
      A[v] = 1 - A[v];
      X.set(v, f(v));
    }
    if (t == 2) {
      // calc
      root = v;
    }
    auto ANS = X.prod_all(root);
    ll ans = ANS.dat[0][0];
    print(ans);
  }
}

signed main() {
  INT(T);
  FOR(T) solve();
}

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 1ms
memory: 3712kb

input:

1
3 3
0 0 1
1 2
3 1
1 1
2 2
1 1

output:

2
1
1

result:

ok 3 lines

Test #2:

score: 0
Accepted
time: 93ms
memory: 30876kb

input:

1
100000 100000
0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 0 1 0 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 1 1 ...

output:

49874
50073
49944
49944
49917
49916
49984
49947
49945
49870
50089
50088
50024
50025
49980
49862
49984
49982
49983
49990
49949
49951
49950
50195
50196
50196
49955
50072
50071
49993
50021
50134
49985
49917
49886
49885
50134
49818
49819
49952
49954
49955
49986
50046
50018
50021
50020
50017
50130
50132
...

result:

ok 100000 lines

Test #3:

score: 0
Accepted
time: 60ms
memory: 6680kb

input:

10
9141 9858
1 1 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0 1 1...

output:

4598
4606
4568
4553
4529
4529
4601
4600
4534
4546
4548
4621
4597
4515
4586
4586
4587
4536
4552
4553
4555
4556
4618
4580
4555
4561
4549
4547
4547
4517
4594
4593
4556
4556
4554
4554
4553
4557
4603
4603
4602
4602
4600
4516
4523
4593
4592
4589
4590
4591
4584
4543
4542
4532
4537
4562
4611
4558
4556
4591
...

result:

ok 95405 lines

Test #4:

score: 0
Accepted
time: 48ms
memory: 7676kb

input:

10
9997 9996
1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 1 1 1 1...

output:

4997
5001
4990
5018
5024
5011
5042
5066
4955
4971
4971
4937
4947
4983
5050
4971
5038
5038
4960
5032
4966
4924
4999
4957
5041
5041
4957
4973
5000
5025
4998
5015
5016
5020
5006
5020
5015
5036
5008
5008
4975
4996
4957
4986
5051
4998
5004
4990
4990
4965
4995
4963
4987
5009
4989
5007
5007
4985
4998
5007
...

result:

ok 99942 lines

Test #5:

score: 0
Accepted
time: 25ms
memory: 3840kb

input:

10000
10 10
0 1 0 1 1 0 0 0 0 1
3 5
5 10
5 4
2 10
2 7
9 4
2 1
3 8
6 7
2 5
1 7
1 5
2 1
1 7
1 9
2 1
2 7
1 8
2 4
4 10
1 1 0 1
1 4
1 2
2 3
1 4
1 4
2 4
1 3
2 3
2 3
1 2
2 2
2 1
2 4
10 10
0 1 0 1 1 1 0 0 1 0
10 7
7 3
10 5
10 1
1 8
5 6
10 9
2 9
4 3
2 1
2 6
1 1
2 7
1 7
1 5
1 3
1 5
2 7
1 3
4 10
0 1 1 1
1 2
3 ...

output:

7
5
5
3
5
4
4
3
4
7
2
1
3
2
2
2
3
2
2
2
3
3
5
5
5
5
5
5
5
5
2
2
2
2
2
1
3
2
1
1
1
2
2
2
2
2
1
1
1
2
4
5
4
3
5
5
3
4
5
4
4
5
2
3
2
4
5
4
2
3
2
2
2
2
2
2
2
3
3
3
5
2
2
7
2
2
3
2
7
6
4
3
1
1
2
2
3
4
5
4
6
6
4
5
6
4
5
6
6
7
5
2
4
2
4
1
3
2
4
4
3
7
2
6
6
7
6
1
1
1
0
0
1
1
2
1
2
1
2
2
4
2
1
1
2
2
4
3
3
2
...

result:

ok 100000 lines

Extra Test:

score: 0
Extra Test Passed