QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#916931 | #9728. Catch the Star | Jose_17 | AC ✓ | 1348ms | 52148kb | C++14 | 17.9kb | 2025-02-27 02:21:28 | 2025-02-27 02:21:28 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
// Holi c:
//#define ll long long int
#define ii __int128
#define fi first
#define se second
#define pb push_back
#define all(v) v.begin(), v.end()
typedef long long int ll;
const int Inf = 2e9;
const int Inf2 = 2e9 + 1;
const ll mod = 1e9+7;
const ll INF = 4e18;
const ll INF2 = 1e10 + 1;
using ld = long double;
const ld eps = 1e-9, inf = numeric_limits<ld>::max(), pi = acos(-1);
bool geq(ld a, ld b){return a-b >= -eps;}
bool leq(ld a, ld b){return b-a >= -eps;}
bool ge(ld a, ld b){return a-b > eps;}
bool le(ld a, ld b){return b-a > eps;}
bool eq(ld a, ld b){return abs(a-b) <= eps;}
bool neq(ld a, ld b){return abs(a-b) > eps;}
struct fraccion{
ll num, den;
fraccion(){
num = 0, den = 1;
}
fraccion(ll x, ll y){
if(y < 0)
x *= -1, y *=-1;
ll d = __gcd(abs(x), abs(y));
num = x/d, den = y/d;
}
fraccion(ll v){
num = v;
den = 1;
}
fraccion operator+(const fraccion& f) const{
ll d = __gcd(den, f.den);
return fraccion(num*(f.den/d) + f.num*(den/d), den*(f.den/d));
}
fraccion operator-() const{
return fraccion(-num, den);
}
fraccion operator-(const fraccion& f) const{
return *this + (-f);
}
fraccion operator*(const fraccion& f) const{
return fraccion(num*f.num, den*f.den);
}
fraccion operator/(const fraccion& f) const{
return fraccion(num*f.den, den*f.num);
}
fraccion operator+=(const fraccion& f){
*this = *this + f;
return *this;
}
fraccion operator-=(const fraccion& f){
*this = *this - f;
return *this;
}
fraccion operator++(int xd){
*this = *this + 1;
return *this;
}
fraccion operator--(int xd){
*this = *this - 1;
return *this;
}
fraccion operator*=(const fraccion& f){
*this = *this * f;
return *this;
}
fraccion operator/=(const fraccion& f){
*this = *this / f;
return *this;
}
bool operator==(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) == (ii)((ii)den/d)*f.num);
}
bool operator!=(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) != (ii)((ii)den/d)*f.num);
}
bool operator >(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) > (ii)((ii)den/d)*f.num);
}
bool operator <(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) < (ii)((ii)den/d)*f.num);
}
bool operator >=(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) >= (ii)((ii)den/d)*f.num);
}
bool operator <=(const fraccion& f) const{
ll d = __gcd(den, f.den);
return (ii)((ii)num*(f.den/d) <= (ii)((ii)den/d)*f.num);
}
fraccion inverso() const{
return fraccion(den, num);
}
fraccion fabs() const{
fraccion nueva;
nueva.num = abs(num);
nueva.den = den;
return nueva;
}
long double value() const{
return (long double)num / (long double)den;
}
};
bool geqf(fraccion a, fraccion b){return a >= b;}
bool leqf(fraccion a, fraccion b){return a <= b;}
bool gef(fraccion a, fraccion b){return a > b;}
bool lef(fraccion a, fraccion b){return a < b;}
bool eqf(fraccion a, fraccion b){return a == b;}
bool neqf(fraccion a, fraccion b){return a != b;}
struct point{
ld x, y;
point(): x(0), y(0){}
point(ld x, ld y): x(x), y(y){}
point operator+(const point & p) const{return point(x + p.x, y + p.y);}
point operator-(const point & p) const{return point(x - p.x, y - p.y);}
point operator*(const ld & k) const{return point(x * k, y * k);}
point operator/(const ld & k) const{return point(x / k, y / k);}
point perp() const{return point(-y, x);}
ld dot(const point & p) const{return x * p.x + y * p.y;}
ld cross(const point & p) const{return x * p.y - y * p.x;}
ld norm() const{return x * x + y * y;}
ld length() const{return sqrtl(x * x + y * y);}
point unit() const{return (*this) / length();}
bool operator==(const point & p) const{return eq(x, p.x) && eq(y, p.y);}
bool operator!=(const point & p) const{return !(*this == p);}
bool operator<(const point & p) const{return le(x, p.x) || (eq(x, p.x) && le(y, p.y));}
bool operator>(const point & p) const{return ge(x, p.x) || (eq(x, p.x) && ge(y, p.y));}
};
istream &operator>>(istream &is, point & p){return is >> p.x >> p.y;}
ostream &operator<<(ostream &os, const point & p){return os << "(" << p.x << ", " << p.y << ")";}
struct pointf {
fraccion x, y;
pointf(): x(fraccion()), y(fraccion()) {}
pointf(fraccion x, fraccion y): x(x), y(y) {}
pointf operator+(const pointf & p) const{return pointf(x + p.x, y + p.y);}
pointf operator-(const pointf & p) const{return pointf(x - p.x, y - p.y);}
pointf operator*(const fraccion & k) const{return pointf(x * k, y * k);}
pointf operator/(const fraccion & k) const{return pointf(x / k, y / k);}
pointf operator+=(const pointf & p){*this = *this + p; return *this;}
pointf operator-=(const pointf & p){*this = *this - p; return *this;}
pointf operator*=(const fraccion & p){*this = *this * p; return *this;}
pointf operator/=(const fraccion & p){*this = *this / p; return *this;}
fraccion dot(const pointf & p) const{return x * p.x + y * p.y;}
fraccion cross(const pointf & p) const{return x * p.y - y * p.x;}
fraccion norm() const{return x + y;}
bool operator==(const pointf & p) const{return eqf(x, p.x) && eqf(y, p.y);}
bool operator!=(const pointf & p) const{return !(*this == p);}
bool operator<(const pointf & p) const{return lef(x, p.x) || (eqf(x, p.x) && lef(y, p.y));}
bool operator>(const pointf & p) const{return gef(x, p.x) || (eqf(x, p.x) && gef(y, p.y));}
};
int sgn(ld x){
if(ge(x, 0)) return 1;
if(le(x, 0)) return -1;
return 0;
}
vector<point> convexHull(vector<point> P){
sort(P.begin(), P.end());
vector<point> L, U;
for(int i = 0; i < P.size(); i++){
while(L.size() >= 2 && leq((L[L.size() - 2] - P[i]).cross(L[L.size() - 1] - P[i]), 0)){
L.pop_back();
}
L.push_back(P[i]);
}
for(int i = P.size() - 1; i >= 0; i--){
while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
U.pop_back();
}
U.push_back(P[i]);
}
L.pop_back();
U.pop_back();
L.insert(L.end(), U.begin(), U.end());
return L;
}
vector<vector<point>> twoSidesCH(vector<point> P){
sort(P.begin(), P.end());
vector<vector<point>> L;
vector<point> U;
for(int i = 0; i < P.size(); i++){
while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
U.pop_back();
}
U.push_back(P[i]);
}
if(eq(U[U.size() - 1].x, U[U.size() - 2].x)) U.pop_back();
L.pb(U);
U.clear();
for(int i = P.size() - 1; i >= 0; i--){
while(U.size() >= 2 && leq((U[U.size() - 2] - P[i]).cross(U[U.size() - 1] - P[i]), 0)){
U.pop_back();
}
U.push_back(P[i]);
}
reverse(all(U));
if(eq(U[U.size() - 1].x, U[U.size() - 2].x)) U.pop_back();
reverse(all(U));
if(eq(U[U.size() - 1].x, U[U.size() - 2].x)) U.pop_back();
L.pb(U);
return L;
}
ld area(vector<point> & P){
int n = P.size();
ld ans = 0;
for(int i = 0; i < n; i++){
ans += P[i].cross(P[(i + 1) % n]);
}
return abs(ans / 2);
}
pointf intersectLinesf(const point & a1, const point & v1, const point & a2, const point & v2){
fraccion det = v1.cross(v2);
pointf b1(a1.x, a1.y), u1(v1.x, v1.y), b2(a2.x, a2.y), u2(v2.x, v2.y);
return b1 + u1 * ((b2 - b1).cross(u2) / det);
}
point intersectLines(const point & a1, const point & v1, const point & a2, const point & v2){
//lines a1+tv1, a2+tv2
//assuming that they intersect
ld det = v1.cross(v2);
return a1 + v1 * ((a2 - a1).cross(v2) / det);
}
bool pointInLine(const point & a, const point & v, const point & p){
return eq((p - a).cross(v), 0);
}
bool pointInSegment(const point & a, const point & b, const point & p){
return pointInLine(a, b - a, p) && leq((a - p).dot(b - p), 0);
}
int intersectSegmentsInfo(const point & a, const point & b, const point & c, const point & d){
//segment ab, segment cd
point v1 = b - a, v2 = d - c;
int t = sgn(v1.cross(c - a)), u = sgn(v1.cross(d - a));
if(t == u){
if(t == 0){
if(pointInSegment(a, b, c) || pointInSegment(a, b, d) || pointInSegment(c, d, a) || pointInSegment(c, d, b)){
return -1; //infinity points
}else{
return 0; //no point
}
}else{
return 0; //no point
}
}else{
return sgn(v2.cross(a - c)) != sgn(v2.cross(b - c)); //1: single point, 0: no point
}
}
bool pointInPerimeter(const vector<point> & P, const point & p){
int n = P.size();
for(int i = 0; i < n; i++){
if(pointInSegment(P[i], P[(i + 1) % n], p)){
return true;
}
}
return false;
}
bool crossesRay(const point & a, const point & b, const point & p){
return (geq(b.y, p.y) - geq(a.y, p.y)) * sgn((a - p).cross(b - p)) > 0;
}
int pointInPolygon(const vector<point> & P, const point & p){
if(pointInPerimeter(P, p)){
return 1;
}
int n = P.size();
int rays = 0;
for(int i = 0; i < n; i++){
rays += crossesRay(P[i], P[(i + 1) % n], p);
}
return rays & 1;
}
int intersectLineSegmentInfo(const point & a, const point & v, const point & c, const point & d){
//line a+tv, segment cd
point v2 = d - c;
ld det = v.cross(v2);
if(eq(det, 0)){
if(eq((c - a).cross(v), 0)){
return -1; //infinity points
}else{
return 0; //no point
}
}else{
return sgn(v.cross(c - a)) != sgn(v.cross(d - a)); //1: single point, 0: no point
}
}
vector<point> cutPolygon(const vector<point> & P, const point & a, const point & v){
//returns the part of the convex polygon P on the left side of line a+tv
int n = P.size();
vector<point> lhs;
for(int i = 0; i < n; ++i){
if(geq(v.cross(P[i] - a), 0)){
lhs.push_back(P[i]);
}
if(intersectLineSegmentInfo(a, v, P[i], P[(i+1)%n]) == 1){
point p = intersectLines(a, v, P[i], P[(i+1)%n] - P[i]);
if(p != P[i] && p != P[(i+1)%n]){
lhs.push_back(p);
}
}
}
return lhs;
}
vector<point> tangentsPointPolygon(const vector<point> & P, const vector<vector<point>> & Ps, const point & p){
int n = P.size(), m = Ps[0].size(), k = Ps[1].size();
int lk = m; if(Ps[0][m - 1] == Ps[1][0]) lk--;
auto tang = [&](int l, int r, ld w, int kl) -> int {
int res = min(l, r);
while(l <= r){
int m = (l + r) / 2;
ld a = (P[(m + kl) % n] - p).cross(P[(m + 1 + kl) % n] - p) * w, b = (P[(m + kl) % n] - p).cross(P[(m - 1 + n + kl) % n] - p) * w;
if(geq(a, 0) && geq(b, 0)) return m;
if(geq(a, 0)) r = m - 1, res = m;
else l = m + 1;
}
return res;
};
auto bs = [&](int l, int r, const vector<point> & A, ld w) -> int {
int res = l;
ld w1 = p.x * w;
while(l <= r){
int m = (l + r) / 2;
if(ge(A[m].x * w, w1)) r = m - 1;
else res = m, l = m + 1;
}
return res;
};
point left = p, rigth = p;
int t1 = bs(0, m - 1, Ps[0], 1), t2 = bs(0, k - 1, Ps[1], -1);
auto u1 = tang(0, t1, -1, 0), u2 = tang(0, t2, -1, lk);
auto v1 = tang(t1, m - 1, 1, 0), v2 = tang(t2, k - 1, 1, lk);
//if(p.x == P[t1].x) v1 = tang(t1, m - 1, 1, 0);
//if(p.x == P[(lk + t2) % n].x) v2 = tang(t2, k - 1, 1, lk);
if(leq((P[u1] - p).cross(P[(u1 - 1 + n) % n] - p), 0) && leq((P[u1] - p).cross(P[(u1 + 1) % n] - p), 0)) left = P[u1];
else if(leq((P[(lk + u2) % n] - p).cross(P[(lk + u2 - 1 + n) % n] - p), 0) && leq((P[(lk + u2) % n] - p).cross(P[(lk + u2 + 1) % n] - p), 0)) left = P[(lk + u2) % n];
if(geq((P[v1] - p).cross(P[(v1 - 1 + n) % n] - p), 0) && geq((P[v1] - p).cross(P[(v1 + 1) % n] - p), 0)) rigth = P[v1];
else if(geq((P[(lk + v2) % n] - p).cross(P[(lk - 1 + n + v2) % n] - p), 0) && geq((P[(lk + v2) % n] - p).cross(P[(lk + 1 + v2) % n] - p), 0)) rigth = P[(lk + v2) % n];
return {left, rigth};
}
vector<point> tangentsLineal(vector<point> A, point p){
int iz = 0, dr = 0, n = A.size();
for(int i = 0; i < n; i++){
int at = i - 1, nx = i + 1;
if(at < 0) at = n - 1; if(nx == n) nx = 0;
if(leq((A[i] - p).cross(A[at] - p), 0) && leq((A[i] - p).cross(A[nx] - p), 0)) iz = i;
if(geq((A[i] - p).cross(A[at] - p), 0) && geq((A[i] - p).cross(A[nx] - p), 0)) dr = i;
}
return {A[iz], A[dr]};
}
pair<fraccion, fraccion> calc(vector<point> & A, vector<point> B, vector<vector<point>> & tws, int l, int r){
fraccion minx = Inf2, maxx = -Inf2;
pointf x0(-Inf2, 0), x1(Inf2, 0);
point s0(-Inf2, 0), s1(Inf2, 0);
point w1(l, 0), w2(r, 0);
int n = B.size();
for(int i = 0; i < n; i++){
auto u = intersectSegmentsInfo(B[i], B[(i + 1) % n], s0, s1);
if(u == 1){
auto p = intersectLinesf(B[i], B[(i + 1) % n] - B[i], s0, s1 - s0);
//minx = min(minx, p.x); maxx = max(maxx, p.x);
}else if(u == -1){
//minx = min(minx, min(fraccion(B[i].x), fraccion(B[(i + 1) % n].x)));
//maxx = max(maxx, max(fraccion(B[i].x), fraccion(B[(i + 1) % n].x)));
}
}
point a1(1, 0);
for(int i = 0; i < n; i++){
auto ts = tangentsPointPolygon(A, tws, B[i]);
point t1 = ts[0], t2 = ts[1];
//cout<<B[i]<<" => "<<t1<<" & "<<t2<<'\n';
if(neq(a1.cross(t1 - B[i]), 0)){
auto p1 = intersectLinesf(B[i], t1 - B[i], point(0, 0), a1);
auto p2 = intersectLines(B[i], t1 - B[i], point(0, 0), a1);
bool pl = true;
point p(p1.x.value(), p1.y.value());
//cout<<p.x.value()<<" , "<<p.y.value()<<" | ";
if(eq((p - t1).length(), (p - B[i]).length() + (B[i] - t1).length()) && pl){
//cout<<"r";
if(minx > p1.x) minx = p1.x; if(maxx < p1.x) maxx = p1.x;
}
}
if(neq(a1.cross(t2 - B[i]), 0)){
auto p1 = intersectLinesf(B[i], t2 - B[i], point(0, 0), a1);
auto p2 = intersectLines(B[i], t2 - B[i], point(0, 0), a1);
bool pl = true;
point p(p1.x.value(), p1.y.value());
//cout<<p.x.value()<<" , "<<p.y.value()<<'\n';
if(eq((p - t2).length(), (p - B[i]).length() + (B[i] - t2).length()) && pl){
//cout<<"r";
if(minx > p1.x) minx = p1.x; if(maxx < p1.x) maxx = p1.x;
}
}
//if(ge((t1 - B[i]).cross(w1 - B[i]), 0) && le((t2 - B[i]).cross(w1 - B[i]), 0)) minx = -Inf2;
//if(ge((t1 - B[i]).cross(w2 - B[i]), 0) && le((t2 - B[i]).cross(w2 - B[i]), 0)) maxx = Inf2;
}
auto itg0 = tangentsPointPolygon(A, tws, w1);
auto itg1 = tangentsLineal(B, w1);
auto dtg0 = tangentsPointPolygon(A, tws, w2);
auto dtg1 = tangentsLineal(B, w2);
auto t0 = itg0[0], t1 = itg0[1], t2 = itg1[0], t3 = itg1[1];
auto t4 = dtg0[0], t5 = dtg0[1], t6 = dtg1[0], t7 = dtg1[1];
auto v = B;
v = cutPolygon(v, w1, w1 - t0); v = cutPolygon(v, w1, t1 - w1); v = cutPolygon(v, t1, t0 - t1);
if(area(v) > 0.0001){
minx = -Inf2;
}
/*
if(leq((t2 - w1).cross(t0 - w1), 0) && geq((t3 - w1).cross(t0 - w1), 0)) minx = -Inf2;
if(leq((t2 - w1).cross(t1 - w1), 0) && geq((t3 - w1).cross(t1 - w1), 0)) minx = -Inf2;
if(leq((t0 - w1).cross(t2 - w1), 0) && geq((t1 - w1).cross(t2 - w1), 0)) minx = -Inf2;
*/
v = B;
v = cutPolygon(v, w2, w2 - t4); v = cutPolygon(v, w2, t5 - w2); v = cutPolygon(v, t5, t4 - t5);
if(area(v) > 0.0001){
maxx = Inf2;
}
/*
if(leq((t6 - w2).cross(t4 - w2), 0) && geq((t7 - w2).cross(t4 - w2), 0)) maxx = Inf2;
if(leq((t6 - w2).cross(t5 - w2), 0) && geq((t7 - w2).cross(t5 - w2), 0)) maxx = Inf2;
if(leq((t4 - w2).cross(t6 - w2), 0) && geq((t5 - w2).cross(t6 - w2), 0)) maxx = Inf2;
*/
//cout<<minx.value()<<" "<<maxx.value()<<'\n';
//if(minx == -Inf2 && maxx == Inf2) return {Inf2, Inf2};
return {minx, maxx};
}
ld calc1(){
int m, l, r; cin>>m>>l>>r;
int n; cin>>n;
vector<point> P(n);
for(int i = 0; i < n; i++){
int a, b; cin>>a>>b; P[i] = point(a, b);
}
vector<vector<point>> Moons;
for(int i = 0; i < m; i++){
int k; cin>>k; vector<point> aux;
for(int j = 0; j < k; j++){
int a, b; cin>>a>>b; aux.pb(point(a, b));
}
Moons.pb(aux);
}
P = convexHull(P);
auto tws = twoSidesCH(P);
//for(auto e : tws[1]) cout<<e<<" "; cout<<'\n';
//for(auto e : tw) cout<<e<<" "; cout<<'\n';
vector<pair<fraccion, fraccion>> Segs;
for(int i = 0; i < m; i++){
auto u = calc(P, Moons[i], tws, l , r);
//cout<<'\n'<<"----------------------------------------"<<'\n';
Segs.pb(u);
}
sort(all(Segs));
//for(auto e : Segs) cout<<setprecision(15)<<e.fi.value()<<" , "<<e.se.value()<<" | "; cout<<'\n';
//cout<<(fraccion(Segs[0].se) - fraccion(Segs[0].fi)).value()<<" ";
ld ans = 0; fraccion ant(l); bool f = false;
for(int i = 0; i < m; i++){
if(Segs[i].fi > fraccion(r)){
if(fraccion(r) > ant){
f = true;
}
if(ant < fraccion(r)) ans += (fraccion(r).value() - ant.value());
ant = r;
break;
}
if(Segs[i].fi >= ant){
if(!((Segs[i].fi == l && ant == l) || (Segs[i].fi == r && ant == r))) f = true;
//cout<<(Segs[i].fi - ant).value();
}
if(ant < Segs[i].fi) ans += abs(ant.value() - Segs[i].fi.value());
ant = max(ant, Segs[i].se);
//cout<<ans<<'\n';
}
if(ant < r) ans += (fraccion(r).value() - max(ant.value(), fraccion(l).value())), f = true;
if(!f && ans == 0) return -1;
return ans;
}
int main(){
ios_base::sync_with_stdio(0);cin.tie(0);cout.tie(0);
int t; cin>>t;
while(t--){
auto p = calc1();
cout<<setprecision(25)<<p<<'\n';
}
}
这程序好像有点Bug,我给组数据试试?
詳細信息
Test #1:
score: 100
Accepted
time: 0ms
memory: 4096kb
input:
2 4 -8 8 3 -7 7 -6 8 -7 8 3 -9 -2 -7 3 -9 -1 3 -2 3 0 2 -4 5 3 5 1 5 3 4 2 3 1 -1 2 -2 3 -1 5 -8 8 5 -14 -3 -10 -2 -9 2 -10 4 -12 5 3 -16 0 -15 0 -15 1 3 -15 6 -9 5 -15 7 3 -10 5 -9 5 -10 6 3 -7 3 -3 2 -8 4 3 -6 -1 -6 -2 -5 -1
output:
9.404761904761904761987368 6
result:
ok 2 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 4096kb
input:
3 1 -4 4 3 -2 6 0 5 2 6 3 -3 1 3 1 0 4 3 -2 2 3 -2 4 2 4 0 6 3 -2 2 -1 2 -2 3 3 1 2 2 2 2 3 3 -2 -1 0 -3 2 -1 1 1 2 3 -8 0 -7 0 -8 1 3 -5 0 -4 -1 -4 0
output:
-1 0 1
result:
ok 3 numbers
Test #3:
score: 0
Accepted
time: 1ms
memory: 4096kb
input:
1 1 -744567334 955216804 5 -781518205 -852078097 -781516900 -852078384 -781516392 -852076569 -781518329 -852076047 -781519925 -852077600 5 -393011614 -131855702 -393010699 -131856607 -393008846 -131856475 -393009388 -131854587 -393010201 -131854694
output:
1699779738.691979192313738
result:
ok found '1699779738.691979170', expected '1699779738.691979170', error '0.000000000'
Test #4:
score: 0
Accepted
time: 183ms
memory: 3968kb
input:
16666 2 -732787031 -732787030 3 -798263477 735869144 -583647039 529057159 -583647039 529057160 3 -777230180 499482549 -777230181 499482549 -777230180 499482548 3 -661853868 251627327 -661853868 251627326 -661853867 251627327 2 463140451 463140452 3 232604219 637008523 797038205 345997813 797038205 3...
output:
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
result:
ok 16666 numbers
Test #5:
score: 0
Accepted
time: 106ms
memory: 3968kb
input:
16667 2 -9 7 3 -8 4 -6 1 -4 2 3 6 13 2 12 3 10 3 -1 7 0 10 -3 4 2 -9 5 3 -8 10 -5 8 -4 10 3 10 -8 9 -11 12 -8 3 -10 -5 -8 -4 -7 -1 2 -6 5 3 -8 6 -7 6 -5 7 3 -2 -3 1 -4 -4 -2 3 1 10 0 10 -1 8 2 -9 9 3 -5 -11 -2 -11 -5 -8 3 6 -5 5 -2 4 -5 3 11 6 9 3 11 3 2 -6 5 3 -7 6 -8 7 -9 4 3 9 2 12 -3 11 0 3 -6 3...
output:
16 14 11 15.55555555555555555594105 -1 12 14 17 11 16 11 15 15 10 18 16 14 17 12 16 10 14 3.666666666666666666738947 16 14 17 11 19 13 14 11.80000000000000000017347 18 18 12 11.14285714285714285701895 12 15 9.5 19 20 13 13 14 15 15 14 15 13 2 16 14 14 17 15.39999999999999999965306 2 18 10 17 13.3999...
result:
ok 16667 numbers
Test #6:
score: 0
Accepted
time: 108ms
memory: 4096kb
input:
16667 2 -6 10 3 6 -8 8 -10 9 -7 3 -5 13 -6 10 -6 8 3 8 10 7 7 10 7 2 -8 7 3 2 -10 0 -12 3 -11 3 -6 -7 -3 -5 -4 -4 3 10 -3 8 -3 8 -6 2 -7 6 3 9 1 9 4 6 1 3 7 -6 4 -8 6 -8 3 -3 -12 -4 -10 -5 -14 2 -10 10 3 11 -4 9 -1 9 -3 3 -6 -7 -6 -8 -5 -5 3 -10 -7 -7 -10 -6 -10 2 -9 8 3 3 2 3 1 6 5 3 4 -2 0 -3 1 -3...
output:
16 12.14285714285714285701895 13 20 17 13 15 16 19 11 15 20 15 -1 14 19 17 13 13 1 11 18 11 19 17 4 15 14 14 20 18 -1 10 17 4 12 15 2 19 13 9 10 5.5 17 15 5.222222222222222222029475 5.666666666666666666955787 18 13 18 10.7142857142857142859621 12.5 11 16 15 14 16 15.57142857142857142807579 14 13 17 ...
result:
ok 16667 numbers
Test #7:
score: 0
Accepted
time: 112ms
memory: 4096kb
input:
16667 2 -20 15 3 17 -17 22 -14 14 -16 3 -5 -12 -3 -8 -8 -12 3 11 8 15 10 8 8 2 -10 12 3 -14 -13 -19 -9 -11 -17 3 14 13 10 12 14 9 3 -5 -20 -7 -17 -7 -20 2 -11 10 3 0 -24 -1 -20 -5 -19 3 -12 -2 -15 -5 -12 -5 3 10 -21 14 -24 14 -19 2 -15 20 3 -3 -16 -4 -10 -6 -15 3 8 17 7 12 10 17 3 8 -7 10 -5 11 -3 2...
output:
35 22 21 29.23076923076923076816325 31 37 17.25 38 37 31 30 33 27 30 30 31 16.42857142857142857192421 24.875 32 34.25 33 5.400000000000000000086736 25 14.39999999999999999965306 36 38 27 36 31 33 32 11.33333333333333333304421 24 18 28 34 28.8842105263157894745607 30 35 22 26 28.875 17.5 24 28 35 31 ...
result:
ok 16667 numbers
Test #8:
score: 0
Accepted
time: 111ms
memory: 3968kb
input:
16667 2 -19 19 3 18 -12 22 -15 20 -12 3 24 0 20 2 20 -3 3 15 25 18 20 19 22 2 -18 20 3 10 6 11 11 7 8 3 26 -21 20 -12 21 -17 3 -4 -13 -11 -19 -6 -18 2 -13 14 3 19 -4 20 0 17 -7 3 1 -8 6 -12 3 -7 3 12 -7 5 -2 10 -6 2 -18 12 3 14 -5 15 -6 17 -4 3 18 -20 15 -19 20 -22 3 14 -8 18 -3 12 -10 2 -14 15 3 17...
output:
38 38 13.80000000000000000017347 30 29 25 27 27 29 28 27 34 35 20 20 25 25 38 25 25.5 26 27 39 28 21 36 16.39999999999999999965306 36 22 23 3.666666666666666666088426 23 29 36 34 29 22.5 32 31 23 23 22.20000000000000000069389 30 34 31 34 17.2857142857142857140379 37 32 26 28 3.5555555555555555550736...
result:
ok 16667 numbers
Test #9:
score: 0
Accepted
time: 160ms
memory: 4096kb
input:
8334 5 -17 14 5 -9 13 -12 15 -15 10 -15 9 -13 9 5 24 4 22 9 17 13 20 8 23 4 4 -11 4 -12 6 -17 9 -14 6 5 -7 23 -10 19 -10 17 -1 23 -3 28 4 23 -16 20 -11 15 -7 11 -11 5 15 -9 14 -9 15 -12 19 -14 20 -10 5 -11 10 5 -4 8 -1 10 -13 16 -14 15 -9 11 5 9 2 12 5 14 10 2 4 4 1 5 20 -12 23 -15 29 -10 27 -9 22 -...
output:
20 15 34 21 25 21 21 35 6.333333333333333333044213 32 28 -1 25 30 38 35 8.916666666666666666088426 17.53333333333333333287074 23.84615384615384615397959 34 35 1 6.090909090909090909012058 31 23.25 22.92857142857142857192421 18.79999999999999999930611 38 31 18.7142857142857142859621 31 17.57142857142...
result:
ok 8334 numbers
Test #10:
score: 0
Accepted
time: 158ms
memory: 4096kb
input:
8334 5 -10 19 5 28 13 20 10 24 8 28 8 29 13 5 -5 24 -5 20 -1 19 4 22 -1 24 5 -15 11 -10 8 -9 8 -12 13 -14 16 5 -4 16 -5 11 -1 16 -1 18 -2 21 3 12 21 13 13 17 18 4 -19 7 -15 10 -19 14 -20 12 5 -19 10 5 17 10 14 10 11 8 10 6 11 4 3 -5 -2 -10 -7 -5 -12 4 18 -4 20 -1 20 2 15 -3 4 -16 -4 -20 -5 -16 -9 -1...
output:
29 29 27 35 35 27 33 33.40000000000000000138778 8.5 34 29 29 29 12 23 3.5 30 13.7142857142857142859621 30 23.42857142857142857192421 5.5 35 30.1875 20.68571428571428571369095 31 -1 26 29 -1 22 7 2 18.1111111111111111118821 10.2857142857142857140379 9 35 27 35 29 8.666666666666666666955787 3.66315789...
result:
ok 8334 numbers
Test #11:
score: 0
Accepted
time: 160ms
memory: 4096kb
input:
8334 5 -24 23 5 -2 -9 -8 -9 -5 -13 0 -14 1 -10 3 -15 -8 -10 -4 -16 -7 5 0 -45 1 -45 5 -41 4 -40 -2 -43 3 8 32 9 27 12 30 5 33 1 36 -2 41 1 43 4 32 6 5 5 -35 7 -34 5 -30 1 -30 -2 -33 5 -38 33 5 44 29 39 34 35 35 36 34 41 30 5 29 25 32 20 36 18 37 22 31 27 4 29 15 33 12 38 12 33 17 5 -33 -29 -33 -30 -...
output:
34.59999999999999999861222 -1 63 25 47.75 52.82352941176470588480196 49 62 50.5517241379310344820408 42 39 63 38.81818181818181818371061 37.73684210526315789546725 58 2.333333333333333333911574 51.63636363636363636395177 52 28.14285714285714285788631 60 35.45833333333333333217685 54 49 38.2307692307...
result:
ok 8334 numbers
Test #12:
score: 0
Accepted
time: 163ms
memory: 4096kb
input:
8334 5 -22 38 5 10 -32 12 -30 9 -25 6 -22 6 -27 4 -38 27 -38 24 -37 24 -35 29 4 42 14 42 17 41 18 39 11 3 4 13 -3 15 -1 10 5 -36 5 -27 13 -30 15 -34 13 -36 10 4 -17 -9 -16 -4 -21 -3 -19 -7 5 -28 20 5 41 -2 33 -9 35 -9 37 -8 38 -7 5 5 -15 4 -16 4 -19 5 -23 9 -23 3 -7 -39 -6 -40 -3 -37 3 34 3 37 4 30 ...
output:
57.71428571428571428769683 48 55 59 52.6666666666666666643537 54.3125 65 40.04048582995951417046188 5.14285714285714285788631 32.94117647058823529493399 61 41 58.82608695652173912832295 57 9.1875 66 68.64285714285714285615159 52.09999999999999999861222 67 43 53 59 65 60 -1 40 37.55555555555555555594...
result:
ok 8334 numbers
Test #13:
score: 0
Accepted
time: 294ms
memory: 3968kb
input:
8334 5 -27 34 10 -34 40 -35 39 -39 31 -40 27 -35 25 -30 26 -28 30 -27 33 -27 37 -31 39 9 19 20 21 24 19 29 17 29 16 28 7 16 9 12 13 11 16 15 6 1 -20 7 -28 11 -29 12 -26 10 -22 6 -17 10 40 -48 42 -45 43 -40 39 -36 35 -35 30 -37 28 -40 28 -45 30 -48 35 -50 7 44 -3 49 0 51 2 50 7 48 10 43 5 39 0 8 20 -...
output:
53.27999999999999999888978 59 71 59 11 47 4.599999999999999998612221 41.73333333333333333356463 71 17.73076923076923076816325 46.35294117647058823386552 70 43.93939393939393939225724 -1 44 43 61.28571428571428571230317 49 36.32142857142857142807579 63 34.33333333333333333217685 60 44.095238095238095...
result:
ok 8334 numbers
Test #14:
score: 0
Accepted
time: 294ms
memory: 3968kb
input:
8334 5 -20 29 10 32 17 27 20 25 20 20 16 26 6 31 5 32 5 36 6 37 9 36 14 7 -28 29 -28 33 -32 32 -37 29 -40 27 -37 26 -32 25 7 39 23 36 26 33 28 31 29 28 27 30 22 32 18 8 1 13 5 13 6 17 4 22 0 26 -4 24 -5 19 -3 15 8 -26 28 -23 23 -19 25 -15 29 -13 34 -23 36 -27 36 -27 33 8 4 39 2 38 -2 33 -2 32 0 27 3...
output:
49 51 55 -1 59 23.26666666666666666643537 40.53846153846153846367351 34.13513513513513513569775 28.39999999999999999965306 73 54.05263157894736842160044 59 18.16666666666666666608843 66 -1 -1 48 50 13.09090909090909090987942 60 55 63 42.75 50.64285714285714285615159 55 25.9090909090909090918553 28.3...
result:
ok 8334 numbers
Test #15:
score: 0
Accepted
time: 409ms
memory: 4096kb
input:
8334 5 -3126 3527 40 2524 -3205 2555 -3204 2565 -3202 2571 -3200 2573 -3199 2582 -3194 2590 -3189 2593 -3187 2597 -3182 2603 -3174 2608 -3164 2610 -3159 2612 -3149 2611 -3139 2608 -3134 2606 -3132 2598 -3125 2588 -3120 2583 -3118 2575 -3115 2565 -3112 2555 -3110 2553 -3110 2544 -3111 2538 -3112 2528...
output:
6508.695260477869173776355 6121 5228.14605087984021247749 7545 6439.301684904757895999694 5552 7258 4340 7161 6347 6490.569421429937990275505 7132.550454048035018406182 5888.756053076135560164772 5827 4107 5813 6743 5977 6626 5587.25521134916039400764 6704.412641706233566551987 5040.2759891723780452...
result:
ok 8334 numbers
Test #16:
score: 0
Accepted
time: 412ms
memory: 3968kb
input:
8334 5 -2274 2353 40 2604 1999 2602 1992 2601 1985 2601 1984 2603 1974 2606 1965 2610 1955 2613 1948 2623 1940 2633 1938 2636 1939 2644 1944 2651 1949 2660 1956 2713 2008 2718 2015 2721 2021 2720 2031 2719 2040 2718 2048 2717 2051 2713 2060 2708 2070 2698 2078 2692 2080 2685 2082 2676 2083 2672 2082...
output:
4298.549625660067996069102 5799 4987.365051309711503790822 7308 5589.703760348221036835525 4652 6082.141746146348857848807 6086 3355.766144503350745909032 6459 6291 4838 4464.180612025333167558472 6093 6359 5211.003728784234597881664 4869.940969296873025662364 6031 7458 4466.892523364485981574035 56...
result:
ok 8334 numbers
Test #17:
score: 0
Accepted
time: 836ms
memory: 4224kb
input:
2274 5 -29040 32893 40 21293 3672 21285 3680 21278 3685 21271 3688 21266 3690 21258 3693 21255 3694 21254 3694 21245 3693 21239 3692 21223 3687 21218 3684 21214 3680 21208 3673 21203 3667 21198 3659 21195 3650 21193 3643 21191 3633 21194 3624 21198 3616 21203 3609 21211 3600 21220 3590 21221 3589 21...
output:
61933 35500.5 49406 67961.06673024960765872038 54610 63846 54004 48450.54339922606454038601 48956.33275865308729990488 60754 62140.87790921051610837367 68347.65153181557510464472 68003.03985160648530694516 57584 56121 72509 58579 48528 51409.77736672146331287081 56916 50965 63455 47426 53939 62687 4...
result:
ok 2274 numbers
Test #18:
score: 0
Accepted
time: 838ms
memory: 4224kb
input:
2271 5 -21608 38109 40 3288 29821 3282 29828 3277 29833 3268 29840 3258 29846 3256 29847 3250 29849 3240 29852 3233 29854 3228 29855 3220 29856 3218 29856 3212 29855 3210 29854 3205 29851 3197 29846 3189 29840 3179 29831 3176 29827 3171 29820 3165 29811 3163 29807 3160 29797 3167 29789 3172 29784 31...
output:
59717 62108 57257 66813.389315562535180959 65446 59441.15996084618944905742 55000 70062.36764271788123892293 61092.72227050713498641699 62176 58821 55055.67260985286614172196 52351 63396.88025841990810249627 51497 59209.96946518843044060532 68809.99886890207493195248 43824 69632 54865 57145 74565 59...
result:
ok 2271 numbers
Test #19:
score: 0
Accepted
time: 1022ms
memory: 4224kb
input:
1997 5 -685963307 853750511 100 372319561 823923262 372319594 823923310 372319621 823923350 372319653 823923400 372319681 823923445 372319710 823923492 372319721 823923511 372319739 823923548 372319750 823923572 372319764 823923603 372319780 823923639 372319785 823923651 372319795 823923692 37231980...
output:
1539712423.494848530157469 1259604092 1674868892 1100380125 1314807604 1476460075 1657770700 1681539925 1479119212 1631814313.223218382685445 1480527084 1718090694 1110684254 1648989975 1557856171 1841742140 1510489726 1928000884 1310353144 1145118694.755190038122237 1347709771 1588362127.9654922827...
result:
ok 1997 numbers
Test #20:
score: 0
Accepted
time: 1022ms
memory: 4096kb
input:
1998 5 -923518671 909017531 100 921654169 61734551 921654198 61734600 921654221 61734644 921654467 61735150 921654480 61735178 921654498 61735219 921654513 61735254 921654521 61735279 921654530 61735323 921654538 61735365 921654541 61735403 921654531 61735447 921654520 61735489 921654511 61735514 92...
output:
1832536202 1443062393.553619663813151 1680030554 1744446320.930086122010835 1205113181 1326796808 1213723402.194488483481109 1578305206.621328872861341 1334732988.958808328374289 1129359860.218818572815508 1542969200 1183125071.746443211100996 1404794757 1645873261 1131222178 1517285172 1856756798 1...
result:
ok 1998 numbers
Test #21:
score: 0
Accepted
time: 250ms
memory: 4096kb
input:
8334 5 -744567334 955216804 5 -781518205 -852078097 -781516900 -852078384 -781516392 -852076569 -781518329 -852076047 -781519925 -852077600 3 871916993 -588891734 871918253 -588892444 871918745 -588891234 5 -393011614 -131855702 -393010699 -131856607 -393008846 -131856475 -393009388 -131854587 -3930...
output:
1699779738.691979192313738 1527796251.090272669214755 1655793192.926833341945894 1672892305 1368134291 1463897904 1363175149 1296404984 1424194359 1029663073 1778254477 1503717633 1668133548 1493882251 1440932798.132074052235112 1487230105 1614511695.316303882282227 1421372056 1554693574.43057720665...
result:
ok 8334 numbers
Test #22:
score: 0
Accepted
time: 251ms
memory: 3968kb
input:
8334 5 -829825735 601784461 5 714610651 -975306485 714610404 -975306399 714609317 -975307983 714610491 -975308230 714610739 -975307741 5 -478043159 166470433 -478042674 166466411 -478041707 166468042 -478041795 166469844 -478042741 166471670 5 -574496064 117824476 -574497244 117826229 -574498481 117...
output:
1431606742.600444138166495 1730324827 1908650236.118417557328939 1890778564 1340666568 1319811364 1421853075 1490477103 1873755437 1570402518 1395074328 1612895854 1428358763 1323150903 1489866106 1541128379.772987372940406 1208364335 1511218105 1512984558 1361747390 1064194156.964996762864757 12694...
result:
ok 8334 numbers
Test #23:
score: 0
Accepted
time: 463ms
memory: 3968kb
input:
8334 5 -913048220 656325022 10 -166143242 -673183677 -166142264 -673184186 -166140797 -673184088 -166139127 -673183351 -166137499 -673182562 -166137324 -673182139 -166138589 -673181699 -166140193 -673181144 -166141964 -673181446 -166142469 -673181967 6 -945075435 650359787 -945076678 650360341 -9450...
output:
1569349415.914345892262645 1880676443 1316771742 1107991785 1549997697.444173724157736 1824059958 1444570056 1418459383 1505112947 1326424768.43103340070229 1369086579 1304632569.014852368272841 1440938152 1283836484 1676918571.102657952578738 1511733245 1572735322 1649259026.001737006707117 1517769...
result:
ok 8334 numbers
Test #24:
score: 0
Accepted
time: 465ms
memory: 3968kb
input:
8334 5 -894419066 986206278 10 438340992 -480519836 438342647 -480520761 438343571 -480520315 438344403 -480519603 438345824 -480518172 438346510 -480516618 438345277 -480515164 438343852 -480515669 438342447 -480516557 438340542 -480518404 10 -240550387 -258562092 -240551334 -258563442 -240550967 -...
output:
1880625344 1466897680.337360215140507 1494132112.283291047438979 1408363298.695816568098962 1390133394 1485867441.421866823220626 1590839506 1556522174.344312858767807 1614474976 1231693774 1493791516 1294379747 1456791864 1840525191 1343042881.426223344053142 1226808236.317833892768249 1658890773.7...
result:
ok 8334 numbers
Test #25:
score: 0
Accepted
time: 1029ms
memory: 4096kb
input:
2004 5 -851485863 922356807 100 806952389 -620838027 806952796 -620839051 806952929 -620839348 806953823 -620841099 806955255 -620843002 806956607 -620844576 806958351 -620846452 806958738 -620846812 806960698 -620848575 806962485 -620850179 806964065 -620851590 806965685 -620852945 806966771 -62085...
output:
1773665579.396214645006694 1245647086 1698103416.989566450472921 1192937188 1495810673 1331670703.053293028846383 1550766126 1572739123 1403505529.750806877505966 1564997181 1537044013 1092166901 1380042249.443731406703591 1665880122 1468783645 1479396541 1650669917 1654489929.983050543698482 182800...
result:
ok 2004 numbers
Test #26:
score: 0
Accepted
time: 1033ms
memory: 4096kb
input:
2001 5 -807916374 951640620 100 471800611 -609005450 471800882 -609005598 471802784 -609006412 471803897 -609006871 471804858 -609007255 471806094 -609007726 471807518 -609008221 471808084 -609008358 471830663 -609011338 471831366 -609011271 471832821 -609011131 471834532 -609010816 471835066 -60901...
output:
1759556994 1438355564 1162987446 1473770184 1660711599.304879248840734 1258059674 1509519860 1502232261.351548268459737 1622595242 1116409602 1497870504 1707338453 1606780390 1276518919.243549070321023 1353688653 1375742072.247927647200413 1172305883 1247991230.650028506992385 1471026036.81045036728...
result:
ok 2001 numbers
Test #27:
score: 0
Accepted
time: 453ms
memory: 3968kb
input:
10000 4 -876359283 597412519 84 -787103890 -543670676 -787103889 -543670617 -787103891 -543670566 -787103894 -543670542 -787103904 -543670486 -787103936 -543670413 -787103965 -543670352 -787104009 -543670286 -787104058 -543670216 -787104095 -543670169 -787104166 -543670087 -787104201 -543670047 -787...
output:
1473771802 1184445109 1273369968 1842104023.149110004073009 1401842961.365504766814411 1220676735 1584003979 1936415212.603602312272415 1439576635 1536198292 1744272262.969543530372903 1361024307 1572622937 1584471758.761927884304896 1862674505 1442207569.565795016009361 1373627850.679396792547777 1...
result:
ok 10000 numbers
Test #28:
score: 0
Accepted
time: 449ms
memory: 4096kb
input:
10000 4 -514589336 681051743 84 260136457 -778772788 260136398 -778772766 260136148 -778772704 260136080 -778772696 260135984 -778772691 260135939 -778772690 260135861 -778772692 260135765 -778772698 260135685 -778772707 260135618 -778772723 260135537 -778772753 260135478 -778772779 260135382 -77877...
output:
1195641079 1569912356 1518856735 1342714391 1214213079 1283220624 1796134134.931510697351769 1801713431 1728469471 1970762015 1597570818.429018666618504 1543786958 1445478087.780667074723169 1300840664 1647296924 1517434584 1242991475.714350626105443 1437348569 1299658132 1257135941 1682186294 10446...
result:
ok 10000 numbers
Test #29:
score: 0
Accepted
time: 458ms
memory: 3968kb
input:
10000 4 -854654469 777152266 84 -384437137 684560566 -384431810 684557290 -384422840 684552374 -384419937 684550899 -384413227 684547586 -384405159 684543922 -384396194 684540151 -384388285 684537901 -384381318 684537075 -384371666 684537161 -384370437 684537184 -384360706 684539373 -384351311 68454...
output:
1631806735 1424123468 1389677992.918774294201285 1576800025 1598916583 1464498679 1442804058 1666175099 1255050820.570157381473109 1561177121.734743743902072 1064468001.845047503069509 1105635482 1775824748.076137364492752 1463695468 1456224489.19731858430896 1653616905.973591265035793 1551751818 14...
result:
ok 10000 numbers
Test #30:
score: 0
Accepted
time: 452ms
memory: 3968kb
input:
10000 4 -771015246 658891315 84 45385710 -738165668 45385885 -738161269 45383143 -738154169 45381155 -738149591 45376641 -738139660 45372989 -738132856 45368735 -738126806 45366451 -738123774 45362745 -738119336 45356788 -738112594 45349125 -738104101 45342610 -738097460 45340181 -738095044 45333803...
output:
1429897974.608923890977167 1599820440 1236214920 1209017337.677535888622515 1873859588 1497435375.642676783725619 1478507602 1482210060 1260810353.914800924248993 1951395191.179261310491711 1753080128.449704686179757 1585952534 1759261924 1515725206 1529067000.752642959821969 1460498993 1760974739.4...
result:
ok 10000 numbers
Test #31:
score: 0
Accepted
time: 457ms
memory: 3968kb
input:
10000 4 -674914723 624418103 84 468468889 -499756104 468162339 -498888072 467601497 -497899887 466878219 -497038435 466134518 -496365273 465159179 -495560087 464211972 -495044122 464079613 -494973564 452212861 -493825380 452065957 -493824296 451407015 -493875285 450463932 -494062942 449543371 -49428...
output:
1264072929.761670227628201 1254262766 1663984089 1010711694.654035213636234 1470813291 1650827665.882998784072697 1254261966 1831622248 1374140339 1281253922.24806401040405 1567809316 1399880736.470407432178035 1620275496.955035088118166 1536577911 1675234428.528053288348019 1582493310 1146903499 14...
result:
ok 10000 numbers
Test #32:
score: 0
Accepted
time: 458ms
memory: 3968kb
input:
10000 4 -793175674 721626772 84 159345272 608883920 159698008 608015757 160118829 607278757 160699965 606292987 161301597 605353770 161836414 604600518 162258566 604103305 163119033 603125136 163652511 602547566 164390150 601772176 164814728 601358247 165571440 600703011 166011409 600345459 16678223...
output:
1504659632.681522995233536 1455208210 1338582258.145939962705597 1165325420.677496582968161 1454903090 1213494640 1777063188 1517563822.731618181569502 1068984015 1565287784 1375082267 1360915571 1499217617.692631965968758 1200971318 1248299373 1316644519 1582606361 1299261745 1440168826.22289606858...
result:
ok 10000 numbers
Test #33:
score: 0
Accepted
time: 289ms
memory: 6240kb
input:
5 10000 -525096166 506746434 3000 528096060 105801840 528097856 105801473 528099429 105801157 528100970 105800858 528101306 105800793 528101727 105800712 528103238 105800425 528104747 105800149 528105868 105799944 528107064 105799731 528108575 105799463 528110431 105799134 528111385 105798965 528112...
output:
397560103.4816339959506877 343764949.5169260488764849 314995685.8040496389730833 470388562.8405219377018511 369514676.7580897980369627
result:
ok 5 numbers
Test #34:
score: 0
Accepted
time: 307ms
memory: 6184kb
input:
5 10000 -501317113 815908190 3000 693478209 681557167 693478416 681557435 693479605 681558977 693480659 681560347 693481636 681561619 693481947 681562025 693482896 681563268 693484271 681565098 693485322 681566509 693486379 681567938 693487204 681569054 693488476 681570775 693489313 681571908 693490...
output:
1239559910.44609640724957 62025115.00769637104531284 621348456.9660612920997664 278611566.9257934705528896 934652762.2096404507756233
result:
ok 5 numbers
Test #35:
score: 0
Accepted
time: 718ms
memory: 8332kb
input:
5 10000 -700327508 702989707 3000 -254692935 -831597680 -254694172 -831597571 -254696030 -831597409 -254697316 -831597299 -254699111 -831597155 -254700632 -831597034 -254702548 -831596882 -254703508 -831596808 -254705371 -831596670 -254706070 -831596619 -254707817 -831596493 -254708500 -831596446 -2...
output:
240317371.9617961121402914 417228210.0622807190520689 145169437.6341325242246967 154695358.7931913889187854 661574446.5657238326966763
result:
ok 5 numbers
Test #36:
score: 0
Accepted
time: 732ms
memory: 8340kb
input:
5 10000 -535756158 936247062 3000 166383130 232330358 166382163 232330545 166381842 232330607 166381505 232330671 166380376 232330885 166379421 232331055 166377849 232331322 166376034 232331630 166374935 232331812 166373259 232332089 166371346 232332404 166370470 232332548 166369905 232332639 166369...
output:
321848681.54154536940041 47132901.3201733424430131 1221805373.452837745659053 1344708697.960075947339647 7305558.394949239824200049
result:
ok 5 numbers
Test #37:
score: 0
Accepted
time: 1329ms
memory: 35840kb
input:
2 10000 -758768479 517152843 3000 -196475875 -622544724 -196474245 -622545180 -196474129 -622545212 -196472878 -622545555 -196470969 -622546070 -196470160 -622546279 -196468698 -622546651 -196468113 -622546798 -196466578 -622547183 -196465475 -622547454 -196464203 -622547765 -196462700 -622548130 -1...
output:
253995254.6316990674386034 1328238926
result:
ok 2 numbers
Test #38:
score: 0
Accepted
time: 1315ms
memory: 35812kb
input:
2 10000 -573977895 641919861 3000 347121719 404913819 347122089 404915132 347122631 404917094 347122901 404918076 347123072 404918705 347123279 404919476 347123792 404921397 347124043 404922339 347124204 404922955 347124654 404924689 347125025 404926127 347125471 404927873 347125713 404928830 347126...
output:
173821476.891148404989508 1528471752
result:
ok 2 numbers
Test #39:
score: 0
Accepted
time: 1288ms
memory: 35328kb
input:
1 648 -899534410 747361962 3000 211927638 493123207 211929268 493123656 211930155 493123901 211930800 493124086 211932237 493124502 211933656 493124916 211935226 493125375 211937118 493125929 211939099 493126531 211940702 493127019 211941925 493127397 211943096 493127759 211944029 493128048 21194475...
output:
1309979658.946250796550885
result:
ok found '1309979658.946250916', expected '1309979658.946250916', error '0.000000000'
Test #40:
score: 0
Accepted
time: 1271ms
memory: 35456kb
input:
1 657 -611575720 891439134 3000 491719655 -542798612 491719658 -542799409 491719666 -542801221 491719679 -542802627 491719693 -542804004 491719721 -542805714 491719761 -542807477 491719782 -542808319 491719830 -542809996 491719886 -542811761 491719897 -542812096 491719958 -542813875 491719996 -54281...
output:
1432477725.356502107577398
result:
ok found '1432477725.356502056', expected '1432477725.356502056', error '0.000000000'
Test #41:
score: 0
Accepted
time: 558ms
memory: 20392kb
input:
5 10000 -856871457 916406527 100000 623227399 -926813077 623226044 -926814196 623225217 -926814879 623223907 -926815961 623223067 -926816655 623221482 -926817965 623220871 -926818470 623220092 -926819114 623218435 -926820484 623218013 -926820833 623216069 -926822441 623214200 -926823987 623212464 -9...
output:
-1 -1 -1 -1 -1
result:
ok 5 numbers
Test #42:
score: 0
Accepted
time: 562ms
memory: 20468kb
input:
5 10000 -699668634 624085557 100000 506101157 -445281877 506099344 -445280103 506097486 -445278285 506096559 -445277378 506096281 -445277106 506094668 -445275528 506094484 -445275348 506093473 -445274359 506092374 -445273284 506091779 -445272702 506090503 -445271454 506089547 -445270519 506088365 -4...
output:
-1 -1 220429319.2044120462378487 -1 353925892.9909762743627653
result:
ok 5 numbers
Test #43:
score: 0
Accepted
time: 989ms
memory: 22256kb
input:
5 10000 -622037374 817682512 100000 -625558743 -704636222 -625558729 -704635708 -625558689 -704634239 -625558645 -704632623 -625558596 -704630818 -625558559 -704629455 -625558512 -704627718 -625558462 -704625869 -625558419 -704624273 -625558408 -704623864 -625558394 -704623343 -625558347 -704621591 ...
output:
-1 -1 -1 -1 -1
result:
ok 5 numbers
Test #44:
score: 0
Accepted
time: 998ms
memory: 22112kb
input:
5 10000 -644173104 652456201 100000 541445295 171993628 541445566 171995010 541445715 171995770 541445953 171996985 541445972 171997082 541446355 171999041 541446730 172000960 541447072 172002712 541447310 172003932 541447682 172005839 541448025 172007598 541448409 172009568 541448554 172010312 5414...
output:
-1 -1 -1 -1 218592599.1123368536063936
result:
ok 5 numbers
Test #45:
score: 0
Accepted
time: 1334ms
memory: 45360kb
input:
1 9046 -641166309 543165538 100000 -951104070 580563380 -951104422 580563946 -951105279 580565324 -951106332 580567017 -951107420 580568766 -951108596 580570656 -951109784 580572565 -951110770 580574149 -951111357 580575092 -951111743 580575712 -951112233 580576499 -951112464 580576870 -951113492 58...
output:
-1
result:
ok found '-1.000000000', expected '-1.000000000', error '-0.000000000'
Test #46:
score: 0
Accepted
time: 1348ms
memory: 45360kb
input:
1 9045 -740410642 652751190 100000 419533646 402821427 419534234 402821769 419536223 402822926 419538064 402823997 419540039 402825146 419541895 402826226 419543842 402827359 419545349 402828236 419546581 402828953 419548227 402829911 419548818 402830255 419550371 402831159 419551522 402831829 41955...
output:
-1
result:
ok found '-1.000000000', expected '-1.000000000', error '-0.000000000'
Test #47:
score: 0
Accepted
time: 1267ms
memory: 52148kb
input:
1 18 -948940253 629185104 100000 -833855325 174303631 -833856017 174302309 -833856901 174300620 -833857808 174298887 -833858536 174297496 -833859435 174295778 -833860349 174294031 -833861196 174292412 -833861887 174291091 -833862420 174290072 -833863407 174288185 -833864012 174287028 -833864551 1742...
output:
1389928213.815016854088753
result:
ok found '1389928213.815016747', expected '1389928213.815016747', error '0.000000000'
Test #48:
score: 0
Accepted
time: 1258ms
memory: 51724kb
input:
1 20 -934151185 527681557 100000 29124091 329049242 29124404 329047347 29124592 329046209 29124842 329044697 29125093 329043179 29125387 329041401 29125495 329040748 29125759 329039152 29126077 329037230 29126401 329035272 29126545 329034402 29126703 329033448 29126783 329032965 29127027 329031492 2...
output:
1461832742
result:
ok found '1461832742.000000000', expected '1461832742.000000000', error '0.000000000'
Extra Test:
score: 0
Extra Test Passed