QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#898698 | #10020. Heroes and Illusions | definieren | AC ✓ | 17ms | 7620kb | C++20 | 8.8kb | 2025-02-14 21:33:41 | 2025-02-14 21:33:41 |
Judging History
answer
#include <bits/stdc++.h>
#define fir first
#define sec second
#define mkp make_pair
#define mkt make_tuple
#ifdef LOCAL
#define dbg(x) cerr << "In Line " << __LINE__ << " the " << #x << " = " << x << '\n'
#define dpi(x, y) cerr << "In Line " << __LINE__ << " the " << #x << " = " << x << " ; " << "the " << #y << " = " << y << '\n'
#define dbgf(fmt, args...) fprintf(stderr, fmt, ##args)
#else
#define dbg(x) void()
#define dpi(x, y) void()
#define dbgf(fmt, args...) void()
#endif
using namespace std;
using ll = long long;
using ull = unsigned long long;
using ui = unsigned int;
using ldb = long double;
using i128 = __int128_t;
using ui128 = __uint128_t;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using vi = vector<int>;
using vpii = vector<pii>;
namespace {
bool Mbe;
constexpr int MOD = 998244353;
template<typename T> T Norm(T a, T p = MOD) { return (a % p + p) % p; }
template<typename T> T add(T a, T b, T p = MOD) { return (a + b >= p) ? (a + b - p) : (a + b); }
template<typename T> T del(T a, T b, T p = MOD) { return (a - b < 0) ? (a - b + p) : (a - b); }
template<typename T> T mul(T a, T b, T p = MOD) { return 1ll * a * b % p; }
template<typename T> T cadd(T &a, T b, T p = MOD) { return a = add(a, b, p); }
template<typename T> T cdel(T &a, T b, T p = MOD) { return a = del(a, b, p); }
template<typename T> T cmul(T &a, T b, T p = MOD) { return a = mul(a, b, p); }
template<typename T> bool cmax(T &a, T b) { return a < b ? a = b, true : false; }
template<typename T> bool cmin(T &a, T b) { return a > b ? a = b, true : false; }
template<typename T> T DivFloor(T a, T b) { return a >= 0 ? a / b : (a - b + 1) / b; }
template<typename T> T DivCeil(T a, T b) { return a >= 0 ? (a + b - 1) / b : a / b; }
namespace FastIO {
constexpr int LEN = 1 << 20;
char in[LEN + 1], out[LEN + 1];
char *pin = in, *pout = out, *ein = in, *eout = out + LEN;
char gc() { return pin == ein && (ein = (pin = in) + fread(in, 1, LEN, stdin), ein == in) ? EOF : *pin ++; }
void pc(char c) { pout == eout && (fwrite(out, 1, LEN, stdout), pout = out); (*pout ++) = c; return; }
struct Flush { ~Flush() { fwrite(out, 1, pout - out, stdout); pout = out; return; } } _flush;
template<typename T> T Read() {
T x = 0; int f = 1; char ch = gc();
while (ch < '0' || ch > '9') f = (ch == '-' ? (~f + 1) : f), ch = gc();
while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gc();
return x * f;
}
void Read(char *s) {
char ch = gc();
while (ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t') ch = gc();
while ((ch != EOF) && !(ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t')) *s = ch, s ++, ch = gc();
*s = '\0'; return;
}
template<typename T> void Read(T &x) { x = Read<T>(); return; }
template<typename T, typename ...Args>
void Read(T &x, Args &...args) { Read(x), Read(args...); return; }
template<typename T> void Write(T x) {
static char stk[40]; int tp = 0;
if (x < 0) pc('-'), x = ~x + 1;
do stk[tp++] = x % 10 + 48, x /= 10; while (x);
while (tp --) pc(stk[tp]);
return;
}
void Write(char ch) { pc(ch); return; }
void Write(const char *s) {
while (*s != '\0') pc(*s), s ++;
return;
}
void Puts(const char *s) {
Write(s), pc('\n'); return;
}
template<typename T, typename ...Args>
void Write(T x, Args ...args) { Write(x), Write(args...); return; }
}
#define Read FastIO::Read
#define Write FastIO::Write
#define Puts FastIO::Puts
#define getchar FastIO::gc
#define putchar FastIO::pc
template<unsigned P>
struct Static_Modint {
unsigned x; static constexpr unsigned Mod = P;
constexpr Static_Modint(): x(0U) {}
constexpr Static_Modint(unsigned _x): x(_x % Mod) {}
constexpr Static_Modint(unsigned long long _x): x(_x % Mod) {}
constexpr Static_Modint(int _x): x(((_x %= static_cast<int>(Mod)) < 0) ? (_x + static_cast<int>(Mod)) : _x) {}
constexpr Static_Modint(long long _x): x(((_x %= static_cast<long long>(Mod)) < 0) ? (_x + static_cast<long long>(Mod)) : _x) {}
explicit constexpr operator unsigned() const {
return static_cast<unsigned>(x);
}
explicit constexpr operator unsigned long long() const {
return static_cast<unsigned long long>(x);
}
explicit constexpr operator int() const {
return static_cast<int>(x);
}
explicit constexpr operator long long() const {
return static_cast<long long>(x);
}
explicit constexpr operator bool() const {
return x;
}
constexpr Static_Modint &operator += (const Static_Modint &rhs) {
x = ((x += rhs.x) >= Mod) ? (x - Mod) : x;
return *this;
}
constexpr Static_Modint &operator -= (const Static_Modint &rhs) {
x = ((x -= rhs.x) >= Mod) ? (x + Mod) : x;
return *this;
}
constexpr Static_Modint &operator *= (const Static_Modint &rhs) {
x = (static_cast<unsigned long long>(x) * rhs.x) % Mod;
return *this;
}
constexpr Static_Modint &operator /= (const Static_Modint &rhs) {
return (*this *= rhs.inv());
}
constexpr Static_Modint inv() const {
unsigned a = Mod, b = x; int y = 0, z = 1;
while (b) {
const unsigned q = a / b;
const unsigned c = a - q * b;
a = b, b = c;
const int w = y - static_cast<int>(q) * z;
y = z, z = w;
}
return Static_Modint(y);
}
friend constexpr Static_Modint operator + (const Static_Modint &x) {
return x;
}
friend constexpr Static_Modint operator - (Static_Modint x) {
x.x = x.x ? (Mod - x.x) : 0U;
return x;
}
constexpr Static_Modint &operator ++ () {
x = (x + 1 == Mod) ? 0U : (x + 1);
return *this;
}
constexpr Static_Modint &operator -- () {
x = (x == 0U) ? (Mod - 1) : (x - 1);
return *this;
}
constexpr Static_Modint operator ++ (int) {
Static_Modint tmp = (*this);
return ++ (*this), tmp;
}
constexpr Static_Modint operator -- (int) {
Static_Modint tmp = (*this);
return -- (*this), tmp;
}
friend constexpr Static_Modint operator + (Static_Modint x, const Static_Modint &y) {
return x += y;
}
friend constexpr Static_Modint operator - (Static_Modint x, const Static_Modint &y) {
return x -= y;
}
friend constexpr Static_Modint operator * (Static_Modint x, const Static_Modint &y) {
return x *= y;
}
friend constexpr Static_Modint operator / (Static_Modint x, const Static_Modint &y) {
return x /= y;
}
constexpr Static_Modint Pow(long long y) const {
if (y < 0) return inv().Pow(- y);
Static_Modint x = *this, ans;
ans.x = 1U;
for (; y; y >>= 1, x *= x)
if (y & 1) ans *= x;
return ans;
}
friend constexpr ostream& operator << (ostream& os, const Static_Modint &x) {
return os << x.x;
}
friend constexpr bool operator == (const Static_Modint &x, const Static_Modint &y) {
return x.x == y.x;
}
friend constexpr bool operator != (const Static_Modint &x, const Static_Modint &y) {
return x.x != y.x;
}
friend constexpr bool operator <= (const Static_Modint &x, const Static_Modint &y) {
return x.x <= y.x;
}
friend constexpr bool operator >= (const Static_Modint &x, const Static_Modint &y) {
return x.x >= y.x;
}
friend constexpr bool operator < (const Static_Modint &x, const Static_Modint &y) {
return x.x < y.x;
}
friend constexpr bool operator > (const Static_Modint &x, const Static_Modint &y) {
return x.x > y.x;
}
}; using mint = Static_Modint<MOD>;
struct Combination {
int N;
vector<mint> _fac, _ifac, _inv;
Combination(int n) { Init(n); return; }
Combination(): N(0), _fac{1}, _ifac{1}, _inv{0} { return; }
void Init(int n) {
if (n <= N) return;
_fac.resize(n + 1), _ifac.resize(n + 1), _inv.resize(n + 1);
for (int i = N + 1; i <= n; i ++) _fac[i] = _fac[i - 1] * i;
_ifac[n] = _fac[n].inv();
for (int i = n; i > N; i --) _ifac[i - 1] = _ifac[i] * i,
_inv[i] = _ifac[i] * _fac[i - 1];
N = n; return;
}
mint fac(int n) {
if (n > N) Init(n << 1);
return _fac[n];
}
mint ifac(int n) {
if (n > N) Init(n << 1);
return _ifac[n];
}
mint inv(int n) {
if (n > N) Init(n << 1);
return _inv[n];
}
mint C(int n, int m) {
if (n < m || n < 0 || m < 0) return 0;
return fac(n) * ifac(m) * ifac(n - m);
}
} comb;
void slv() {
ll n, k; Read(n, k);
ll l = 0, r = (n + 1) / 2;
while (l < r) {
ll mid = (l + r + 1) >> 1;
if (mid * (n + 1 - mid) <= k) {
l = mid;
} else {
r = mid - 1;
}
}
if (l * (n + 1 - l) == k) {
mint ans = comb.C(n + 1, l);
if (l == n + 1 - l)
ans *= (MOD + 1) / 2;
Write((int)ans, '\n');
} else {
Puts("0");
}
return;
}
void clr() {
return;
}
bool Med;
}
int main() {
#ifdef LOCAL
freopen("!in.in", "r", stdin);
freopen("!out.out", "w", stdout);
fprintf(stderr, "%.3lf Mb\n", fabs((&Mbe - &Med) / 1048576.0));
#endif
// int T = 1;
int T = Read<int>();
while (T --) slv(), clr();
#ifdef LOCAL
fprintf(stderr, "%d ms\n", (int)clock());
#endif
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3456kb
input:
1 5 9
output:
10
result:
ok 1 number(s): "10"
Test #2:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
4 3 4 6 12 6 11 12 30
output:
3 35 0 286
result:
ok 4 number(s): "3 35 0 286"
Test #3:
score: 0
Accepted
time: 1ms
memory: 4480kb
input:
100000 1 0 1 1 2 0 2 1 2 2 2 3 3 0 3 1 3 2 3 3 3 4 3 5 3 6 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 5 0 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9 5 10 5 11 5 12 5 13 5 14 5 15 6 0 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 6 10 6 11 6 12 6 13 6 14 6 15 6 16 6 17 6 18 6 19 6 20 6 21 7 0 7 1 7 2 7 3 7 4 7 5 7 ...
output:
1 1 1 0 3 0 1 0 0 4 3 0 0 1 0 0 0 5 0 10 0 0 0 0 1 0 0 0 0 6 0 0 15 10 0 0 0 0 0 0 1 0 0 0 0 0 7 0 0 0 21 0 35 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 8 0 0 0 0 28 0 0 56 35 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0 0 0 0 0 36 0 0 0 84 0 126 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0...
result:
ok 100000 numbers
Test #4:
score: 0
Accepted
time: 6ms
memory: 4608kb
input:
100000 100000 5000050000 100000 5000049999 100000 5000049998 100000 5000049997 100000 5000049996 100000 5000049995 100000 5000049994 100000 5000049993 100000 5000049992 100000 5000049991 100000 5000049990 100000 5000049989 100000 5000049988 100000 5000049987 100000 5000049986 100000 5000049985 10000...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 100000 numbers
Test #5:
score: 0
Accepted
time: 9ms
memory: 5888kb
input:
100000 46912 365706917 49182 636258965 77290 2556664705 27786 73422397 93508 1694402104 59871 579442880 42716 228729495 42155 305721575 67614 1758952011 35681 602674542 28171 4246849 21467 227279631 28617 179294021 56165 1202621853 40544 492812833 81297 928180007 26222 30010919 67438 2160182443 4454...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 100000 numbers
Test #6:
score: 0
Accepted
time: 17ms
memory: 7620kb
input:
100000 15262 57528300 62491 976131040 54198 721202370 14947 13285051 35979 129539476 33157 6591600 97608 2279535648 63771 1013167540 80286 613035390 40491 257328612 96616 971104690 59030 423144018 14957 51278477 9889 23074749 85771 1277471595 96655 1082364783 25549 163184241 33545 233239304 35991 31...
output:
742932853 190167927 260561626 390862864 464981422 402844072 772271022 365685850 165699148 397484575 482364024 189862811 933305973 425340046 356443337 917745820 638656736 507033863 175102571 436677557 207650366 696036563 940831612 929085839 847065587 144267450 727449080 119955447 606112759 735025207 ...
result:
ok 100000 numbers
Test #7:
score: 0
Accepted
time: 14ms
memory: 6928kb
input:
100000 46189 90697425 6981 9167376 34637 148165361 93503 974526522 50327 977792484 74483 706465827 33750 105209100 35893 574360354 20854 189160499 52296 717109399 11543 18119034 10279 23929516 33431 183463040 67353 1992958750 10691 24831620 19922 85729532 15526 75643457 60067 1762302707 41402 365928...
output:
518483518 0 864441320 0 0 0 814050510 0 0 0 0 874605187 925561634 0 168310931 118679687 0 0 753648129 491879315 253827115 0 0 0 160588530 702100102 277017152 896156531 0 0 0 0 794860415 0 239611601 852086994 148725046 280480357 888124643 930168541 565449948 0 0 0 414396351 0 0 78007343 0 0 669507568...
result:
ok 100000 numbers