QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#898698#10020. Heroes and IllusionsdefinierenAC ✓17ms7620kbC++208.8kb2025-02-14 21:33:412025-02-14 21:33:41

Judging History

This is the latest submission verdict.

  • [2025-02-14 21:33:41]
  • Judged
  • Verdict: AC
  • Time: 17ms
  • Memory: 7620kb
  • [2025-02-14 21:33:41]
  • Submitted

answer

#include <bits/stdc++.h>

#define fir first
#define sec second
#define mkp make_pair
#define mkt make_tuple
#ifdef LOCAL
#define dbg(x) cerr << "In Line " << __LINE__ << " the " << #x << " = " << x << '\n'
#define dpi(x, y) cerr << "In Line " << __LINE__ << " the " << #x << " = " << x << " ; " << "the " << #y << " = " << y << '\n'
#define dbgf(fmt, args...) fprintf(stderr, fmt, ##args)
#else
#define dbg(x) void()
#define dpi(x, y) void()
#define dbgf(fmt, args...) void()
#endif

using namespace std;

using ll = long long;
using ull = unsigned long long;
using ui = unsigned int;
using ldb = long double;
using i128 = __int128_t;
using ui128 = __uint128_t;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using vi = vector<int>;
using vpii = vector<pii>;

namespace {
bool Mbe;
constexpr int MOD = 998244353;
template<typename T> T Norm(T a, T p = MOD) { return (a % p + p) % p; }
template<typename T> T add(T a, T b, T p = MOD) { return (a + b >= p) ? (a + b - p) : (a + b); }
template<typename T> T del(T a, T b, T p = MOD) { return (a - b < 0) ? (a - b + p) : (a - b); }
template<typename T> T mul(T a, T b, T p = MOD) { return 1ll * a * b % p; }
template<typename T> T cadd(T &a, T b, T p = MOD) { return a = add(a, b, p); }
template<typename T> T cdel(T &a, T b, T p = MOD) { return a = del(a, b, p); }
template<typename T> T cmul(T &a, T b, T p = MOD) { return a = mul(a, b, p); }
template<typename T> bool cmax(T &a, T b) { return a < b ? a = b, true : false; }
template<typename T> bool cmin(T &a, T b) { return a > b ? a = b, true : false; }
template<typename T> T DivFloor(T a, T b) { return a >= 0 ? a / b : (a - b + 1) / b; }
template<typename T> T DivCeil(T a, T b) { return a >= 0 ? (a + b - 1) / b : a / b; }

namespace FastIO {
	constexpr int LEN = 1 << 20;
	char in[LEN + 1], out[LEN + 1];
	char *pin = in, *pout = out, *ein = in, *eout = out + LEN;

	char gc() { return pin == ein && (ein = (pin = in) + fread(in, 1, LEN, stdin), ein == in) ? EOF : *pin ++; }
	void pc(char c) { pout == eout && (fwrite(out, 1, LEN, stdout), pout = out); (*pout ++) = c; return; }
	struct Flush { ~Flush() { fwrite(out, 1, pout - out, stdout); pout = out; return; } } _flush;

	template<typename T> T Read() {
		T x = 0; int f = 1; char ch = gc();
		while (ch < '0' || ch > '9') f = (ch == '-' ? (~f + 1) : f), ch = gc();
		while (ch >= '0' && ch <= '9') x = (x << 1) + (x << 3) + (ch ^ 48), ch = gc();
		return x * f;
	}
	void Read(char *s) {
		char ch = gc();
		while (ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t') ch = gc();
		while ((ch != EOF) && !(ch == ' ' || ch == '\n' || ch == '\r' || ch == '\t')) *s = ch, s ++, ch = gc();
		*s = '\0'; return;
	}
	template<typename T> void Read(T &x) { x = Read<T>(); return; }
	template<typename T, typename ...Args>
	void Read(T &x, Args &...args) { Read(x), Read(args...); return; }
	template<typename T> void Write(T x) {
		static char stk[40]; int tp = 0;
		if (x < 0) pc('-'), x = ~x + 1;
		do stk[tp++] = x % 10 + 48, x /= 10; while (x);
		while (tp --) pc(stk[tp]);
		return;
	}
	void Write(char ch) { pc(ch); return; }
	void Write(const char *s) {
		while (*s != '\0') pc(*s), s ++;
		return;
	}
	void Puts(const char *s) {
		Write(s), pc('\n'); return;
	}
	template<typename T, typename ...Args>
	void Write(T x, Args ...args) { Write(x), Write(args...); return; }
}
#define Read FastIO::Read
#define Write FastIO::Write
#define Puts FastIO::Puts
#define getchar FastIO::gc
#define putchar FastIO::pc

template<unsigned P>
struct Static_Modint {
	unsigned x; static constexpr unsigned Mod = P;
	constexpr Static_Modint(): x(0U) {}
	constexpr Static_Modint(unsigned _x): x(_x % Mod) {}
	constexpr Static_Modint(unsigned long long _x): x(_x % Mod) {}
	constexpr Static_Modint(int _x): x(((_x %= static_cast<int>(Mod)) < 0) ? (_x + static_cast<int>(Mod)) : _x) {}
	constexpr Static_Modint(long long _x): x(((_x %= static_cast<long long>(Mod)) < 0) ? (_x + static_cast<long long>(Mod)) : _x) {}
	explicit constexpr operator unsigned() const {
		return static_cast<unsigned>(x);
	}
	explicit constexpr operator unsigned long long() const {
		return static_cast<unsigned long long>(x);
	}
	explicit constexpr operator int() const {
		return static_cast<int>(x);
	}
	explicit constexpr operator long long() const {
		return static_cast<long long>(x);
	}
	explicit constexpr operator bool() const {
		return x;
	}
	constexpr Static_Modint &operator += (const Static_Modint &rhs) {
		x = ((x += rhs.x) >= Mod) ? (x - Mod) : x;
		return *this;
	}
	constexpr Static_Modint &operator -= (const Static_Modint &rhs) {
		x = ((x -= rhs.x) >= Mod) ? (x + Mod) : x;
		return *this;
	}
	constexpr Static_Modint &operator *= (const Static_Modint &rhs) {
		x = (static_cast<unsigned long long>(x) * rhs.x) % Mod;
		return *this;
	}
	constexpr Static_Modint &operator /= (const Static_Modint &rhs) {
		return (*this *= rhs.inv());
	}
	constexpr Static_Modint inv() const {
		unsigned a = Mod, b = x; int y = 0, z = 1;
		while (b) {
			const unsigned q = a / b;
			const unsigned c = a - q * b;
			a = b, b = c;
			const int w = y - static_cast<int>(q) * z;
			y = z, z = w;
		}
		return Static_Modint(y);
	}
	friend constexpr Static_Modint operator + (const Static_Modint &x) {
		return x;
	}
	friend constexpr Static_Modint operator - (Static_Modint x) {
		x.x = x.x ? (Mod - x.x) : 0U;
		return x;
	}
	constexpr Static_Modint &operator ++ () {
		x = (x + 1 == Mod) ? 0U : (x + 1);
		return *this;
	}
	constexpr Static_Modint &operator -- () {
		x = (x == 0U) ? (Mod - 1) : (x - 1);
		return *this;
	}
	constexpr Static_Modint operator ++ (int) {
		Static_Modint tmp = (*this);
		return ++ (*this), tmp;
	}
	constexpr Static_Modint operator -- (int) {
		Static_Modint tmp = (*this);
		return -- (*this), tmp;
	}
	friend constexpr Static_Modint operator + (Static_Modint x, const Static_Modint &y) {
		return x += y;
	}
	friend constexpr Static_Modint operator - (Static_Modint x, const Static_Modint &y) {
		return x -= y;
	}
	friend constexpr Static_Modint operator * (Static_Modint x, const Static_Modint &y) {
		return x *= y;
	}
	friend constexpr Static_Modint operator / (Static_Modint x, const Static_Modint &y) {
		return x /= y;
	}
	constexpr Static_Modint Pow(long long y) const {
		if (y < 0) return inv().Pow(- y);
		Static_Modint x = *this, ans;
		ans.x = 1U;
		for (; y; y >>= 1, x *= x)
			if (y & 1) ans *= x;
		return ans;
	}
	friend constexpr ostream& operator << (ostream& os, const Static_Modint &x) {
		return os << x.x;
	}
	friend constexpr bool operator == (const Static_Modint &x, const Static_Modint &y) {
		return x.x == y.x;
	}
	friend constexpr bool operator != (const Static_Modint &x, const Static_Modint &y) {
		return x.x != y.x;
	}
	friend constexpr bool operator <= (const Static_Modint &x, const Static_Modint &y) {
		return x.x <= y.x;
	}
	friend constexpr bool operator >= (const Static_Modint &x, const Static_Modint &y) {
		return x.x >= y.x;
	}
	friend constexpr bool operator < (const Static_Modint &x, const Static_Modint &y) {
		return x.x < y.x;
	}
	friend constexpr bool operator > (const Static_Modint &x, const Static_Modint &y) {
		return x.x > y.x;
	}
}; using mint = Static_Modint<MOD>;

struct Combination {
	int N;
	vector<mint> _fac, _ifac, _inv;
	
	Combination(int n) { Init(n); return; }
	Combination(): N(0), _fac{1}, _ifac{1}, _inv{0} { return; }
	void Init(int n) {
		if (n <= N) return;
		_fac.resize(n + 1), _ifac.resize(n + 1), _inv.resize(n + 1);
		for (int i = N + 1; i <= n; i ++) _fac[i] = _fac[i - 1] * i;
		_ifac[n] = _fac[n].inv();
		for (int i = n; i > N; i --) _ifac[i - 1] = _ifac[i] * i,
																 _inv[i] = _ifac[i] * _fac[i - 1];
		N = n; return;
	}
	mint fac(int n) {
		if (n > N) Init(n << 1);
		return _fac[n];
	}
	mint ifac(int n) {
		if (n > N) Init(n << 1);
		return _ifac[n];
	}
	mint inv(int n) {
		if (n > N) Init(n << 1);
		return _inv[n];
	}
	mint C(int n, int m) {
		if (n < m || n < 0 || m < 0) return 0;
		return fac(n) * ifac(m) * ifac(n - m);
	}
} comb;

void slv() {
	ll n, k; Read(n, k);
	
	ll l = 0, r = (n + 1) / 2;
	while (l < r) {
		ll mid = (l + r + 1) >> 1;
		if (mid * (n + 1 - mid) <= k) {
			l = mid;
		} else {
			r = mid - 1;
		}
	}
	if (l * (n + 1 - l) == k) {
		mint ans = comb.C(n + 1, l);
		if (l == n + 1 - l)
			ans *= (MOD + 1) / 2;
		Write((int)ans, '\n');
	} else {
		Puts("0");
	}
	return;
}
void clr() {

	return;
}
bool Med;
}

int main() {
#ifdef LOCAL
	freopen("!in.in", "r", stdin);
	freopen("!out.out", "w", stdout);
	fprintf(stderr, "%.3lf Mb\n", fabs((&Mbe - &Med) / 1048576.0));
#endif
//	int T = 1;
	int T = Read<int>();
	while (T --) slv(), clr();
#ifdef LOCAL
	fprintf(stderr, "%d ms\n", (int)clock());
#endif
	return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3456kb

input:

1
5 9

output:

10

result:

ok 1 number(s): "10"

Test #2:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

4
3 4
6 12
6 11
12 30

output:

3
35
0
286

result:

ok 4 number(s): "3 35 0 286"

Test #3:

score: 0
Accepted
time: 1ms
memory: 4480kb

input:

100000
1 0
1 1
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3
3 4
3 5
3 6
4 0
4 1
4 2
4 3
4 4
4 5
4 6
4 7
4 8
4 9
4 10
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8
5 9
5 10
5 11
5 12
5 13
5 14
5 15
6 0
6 1
6 2
6 3
6 4
6 5
6 6
6 7
6 8
6 9
6 10
6 11
6 12
6 13
6 14
6 15
6 16
6 17
6 18
6 19
6 20
6 21
7 0
7 1
7 2
7 3
7 4
7 5
7 ...

output:

1
1
1
0
3
0
1
0
0
4
3
0
0
1
0
0
0
5
0
10
0
0
0
0
1
0
0
0
0
6
0
0
15
10
0
0
0
0
0
0
1
0
0
0
0
0
7
0
0
0
21
0
35
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
8
0
0
0
0
28
0
0
56
35
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
9
0
0
0
0
0
36
0
0
0
84
0
126
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
10
0
0
0
0
0
0...

result:

ok 100000 numbers

Test #4:

score: 0
Accepted
time: 6ms
memory: 4608kb

input:

100000
100000 5000050000
100000 5000049999
100000 5000049998
100000 5000049997
100000 5000049996
100000 5000049995
100000 5000049994
100000 5000049993
100000 5000049992
100000 5000049991
100000 5000049990
100000 5000049989
100000 5000049988
100000 5000049987
100000 5000049986
100000 5000049985
10000...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 100000 numbers

Test #5:

score: 0
Accepted
time: 9ms
memory: 5888kb

input:

100000
46912 365706917
49182 636258965
77290 2556664705
27786 73422397
93508 1694402104
59871 579442880
42716 228729495
42155 305721575
67614 1758952011
35681 602674542
28171 4246849
21467 227279631
28617 179294021
56165 1202621853
40544 492812833
81297 928180007
26222 30010919
67438 2160182443
4454...

output:

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
...

result:

ok 100000 numbers

Test #6:

score: 0
Accepted
time: 17ms
memory: 7620kb

input:

100000
15262 57528300
62491 976131040
54198 721202370
14947 13285051
35979 129539476
33157 6591600
97608 2279535648
63771 1013167540
80286 613035390
40491 257328612
96616 971104690
59030 423144018
14957 51278477
9889 23074749
85771 1277471595
96655 1082364783
25549 163184241
33545 233239304
35991 31...

output:

742932853
190167927
260561626
390862864
464981422
402844072
772271022
365685850
165699148
397484575
482364024
189862811
933305973
425340046
356443337
917745820
638656736
507033863
175102571
436677557
207650366
696036563
940831612
929085839
847065587
144267450
727449080
119955447
606112759
735025207
...

result:

ok 100000 numbers

Test #7:

score: 0
Accepted
time: 14ms
memory: 6928kb

input:

100000
46189 90697425
6981 9167376
34637 148165361
93503 974526522
50327 977792484
74483 706465827
33750 105209100
35893 574360354
20854 189160499
52296 717109399
11543 18119034
10279 23929516
33431 183463040
67353 1992958750
10691 24831620
19922 85729532
15526 75643457
60067 1762302707
41402 365928...

output:

518483518
0
864441320
0
0
0
814050510
0
0
0
0
874605187
925561634
0
168310931
118679687
0
0
753648129
491879315
253827115
0
0
0
160588530
702100102
277017152
896156531
0
0
0
0
794860415
0
239611601
852086994
148725046
280480357
888124643
930168541
565449948
0
0
0
414396351
0
0
78007343
0
0
669507568...

result:

ok 100000 numbers