QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#892223#9705. MultiplyisWFnoya#AC ✓116ms8164kbC++263.1kb2025-02-10 02:13:272025-02-10 02:13:28

Judging History

This is the latest submission verdict.

  • [2025-02-10 02:13:28]
  • Judged
  • Verdict: AC
  • Time: 116ms
  • Memory: 8164kb
  • [2025-02-10 02:13:27]
  • Submitted

answer

#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include<vector>
const int N=2e6+10;
using namespace std;
using ll = long long;
using ull = unsigned long long;
typedef pair<ll,ll> PII;
int t;
ll max_factor;

ll gcd(ll a, ll b) {
  if (b == 0) return a;
  return gcd(b, a % b);
}

ll bmul(ll a, ll b, ll m) {  // 快速乘
  ull c = (ull)a * (ull)b - (ull)((long double)a / m * b + 0.5L) * (ull)m;
  if (c < (ull)m) return c;
  return c + m;
}

ll qpow(ll x, ll p, ll mod) {  // 快速幂
  ll ans = 1;
  while (p) {
    if (p & 1) ans = bmul(ans, x, mod);
    x = bmul(x, x, mod);
    p >>= 1;
  }
  return ans;
}

bool Miller_Rabin(ll p) {  // 判断素数
  if (p < 2) return false;
  if (p == 2) return true;
  if (p == 3) return true;
  ll d = p - 1, r = 0;
  while (!(d & 1)) ++r, d >>= 1;  // 将d处理为奇数
  for (ll k = 0; k < 10; ++k) {
    ll a = rand() % (p - 2) + 2;
    ll x = qpow(a, d, p);
    if (x == 1 || x == p - 1) continue;
    for (int i = 0; i < r - 1; ++i) {
      x = bmul(x, x, p);
      if (x == p - 1) break;
    }
    if (x != p - 1) return false;
  }
  return true;
}

ll Pollard_Rho(ll x) {
  ll s = 0, t = 0;
  ll c = (ll)rand() % (x - 1) + 1;
  int step = 0, goal = 1;
  ll val = 1;
  for (goal = 1;; goal *= 2, s = t, val = 1) {  // 倍增优化
    for (step = 1; step <= goal; ++step) {
      t = (bmul(t, t, x) + c) % x;
      val = bmul(val, abs(t - s), x);
      if ((step % 127) == 0) {
        ll d = gcd(val, x);
        if (d > 1) return d;
      }
    }
    ll d = gcd(val, x);
    if (d > 1) return d;
  }
}

void fac(ll x) {
  if (x <= max_factor || x < 2) return;
  if (Miller_Rabin(x)) {              // 如果x为质数
    max_factor = max(max_factor, x);  // 更新答案
    return;
  }
  ll p = x;
  while (p >= x) p = Pollard_Rho(x);  // 使用该算法
  while ((x % p) == 0) x /= p;
  fac(x), fac(p);  // 继续向下分解x和p
}

bool tf[N];
vector<int> p;
ll n,x,y;
ll a[N];

void print(__int128 x){
    if(x>=10) print(x/10);
    int t=x%10;
    printf("%d",t);
}

void __(){
    
    srand((unsigned)time(NULL));
    cin>>n>>x>>y;
    for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
    vector<PII> zyz;
    while(x>1){
        max_factor=0;
        fac(x);
        ll cnt=0;
        while(x%max_factor==0){
            cnt++;
            x/=max_factor;
        }
        zyz.push_back({max_factor,cnt});
    }
    __int128 ans=1e30;
    for(auto [j,w]:zyz){
        __int128 tot=0;
        ll res=y;
        while(res>0){
            tot+=res/j;
            res/=j;
        }
        for(int i=1;i<=n;i++){
            ll res=a[i];
            while(res>0){
                tot-=res/j;
                res/=j;
            }
        }
        ans=min(ans,tot/w);
    }
    print(ans);
    puts("");
}

int main() {
    
	srand(time(0));
    for(int i=2;i<N;i++){
        if(!tf[i]) p.push_back(i);
        for(int j=0;1ll*p[j]*i<N;j++){
            tf[i*p[j]]=1;
            if(i%p[j]==0) break;
        }
    }

  cin >> t;
  while (t--) {
    __();
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 6ms
memory: 6256kb

input:

2
3 10 10
2 3 4
2 2 10
1 1

output:

2
8

result:

ok 2 number(s): "2 8"

Test #2:

score: 0
Accepted
time: 9ms
memory: 6260kb

input:

8
929 98210021061137 164832982985885580
43576998167336 157303878397705 212661169553039 169068044677212 17733912750082 101059786177542 56528418806042 170741049344189 128297164019222 208810463591190 96264177952672 70816863413347 116985928070432 56330014332760 10006522486360 110959002803542 15298525649...

output:

1059
95837140
1761303730724
3810060773695
8961243000749
8657430203778550
2603387692898890
569502267311933

result:

ok 8 numbers

Test #3:

score: 0
Accepted
time: 102ms
memory: 8164kb

input:

8
92894 80454414905270281 520643152573491735
2064229122797 4223622787947 1054260245418 4094316313084 3929142530824 6452342289094 3762455615113 3157146960681 5603173442583 1875814573143 1801348242678 2409547278342 6854531398370 1240913563145 1848446319539 1493011800303 5389461335879 7286083232997 579...

output:

6
114168802
81596535601
11028882122096
100316204821427
4718268084920428
394167331265621
539500856199383

result:

ok 8 numbers

Test #4:

score: 0
Accepted
time: 116ms
memory: 6828kb

input:

8
92894 8280090210874177 543856067505017676
7628166265475 4448095856140 3732480525951 6624251584927 2217648228673 2129611741353 2848644172912 8103647146535 1467047865398 2185292600211 1765086497170 6371594269098 8613841584311 6848101874651 718312212561 4093427071182 2289683844966 6915866934586 51966...

output:

65
1246786758
333319010645
13129729242598
84397513456572
1419008292818811
145866895461700
594315405335288

result:

ok 8 numbers

Test #5:

score: 0
Accepted
time: 105ms
memory: 6856kb

input:

8
92894 98210021061137 164832982985885580
437808801937 1580398501813 2136561393792 1698590570197 178168838012 1015326106916 567928960914 1715398889850 1288974230710 2097874172186 967145654868 711481916793 1175332657008 565935634477 100533395596 1114781424652 1537010227806 201374141170 2002549530277 ...

output:

1678
15138363549
3851961323533
9546266194484
65456023237176
50284070499384881
2136489879131768
343921703953617

result:

ok 8 numbers

Test #6:

score: 0
Accepted
time: 10ms
memory: 6384kb

input:

8
929 904648320997198759 857077283552821319
576128640757999 1022489209332927 342306048548590 328717138574533 439703699384584 1250841949052893 226446805904869 337311781446902 272450687310201 983490180331727 1329593231427121 1057041717229744 110875391163525 631842700541257 353425137200360 106750162246...

output:

0
14963454
29504132475
203878226275
8778367031870
15079682243266455
149351201237842
2430883872230178

result:

ok 8 numbers

Test #7:

score: 0
Accepted
time: 97ms
memory: 6896kb

input:

8
92894 904648320997198759 857077283552821319
5796497585331 10287383430483 3443981158080 3307261546850 4423910306892 12584867031801 2278307777449 3393733253885 2741158205233 9895009642558 13377192887408 10635020251022 1115530268804 6357043250803 3555851608183 10740258578761 8070377462103 13134968899...

output:

0
21583598
4114016689
5953125168816
9610340743247
133189637386353298
124668826875053
21617048982826

result:

ok 8 numbers