QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#892223 | #9705. Multiply | isWFnoya# | AC ✓ | 116ms | 8164kb | C++26 | 3.1kb | 2025-02-10 02:13:27 | 2025-02-10 02:13:28 |
Judging History
answer
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <iostream>
#include<vector>
const int N=2e6+10;
using namespace std;
using ll = long long;
using ull = unsigned long long;
typedef pair<ll,ll> PII;
int t;
ll max_factor;
ll gcd(ll a, ll b) {
if (b == 0) return a;
return gcd(b, a % b);
}
ll bmul(ll a, ll b, ll m) { // 快速乘
ull c = (ull)a * (ull)b - (ull)((long double)a / m * b + 0.5L) * (ull)m;
if (c < (ull)m) return c;
return c + m;
}
ll qpow(ll x, ll p, ll mod) { // 快速幂
ll ans = 1;
while (p) {
if (p & 1) ans = bmul(ans, x, mod);
x = bmul(x, x, mod);
p >>= 1;
}
return ans;
}
bool Miller_Rabin(ll p) { // 判断素数
if (p < 2) return false;
if (p == 2) return true;
if (p == 3) return true;
ll d = p - 1, r = 0;
while (!(d & 1)) ++r, d >>= 1; // 将d处理为奇数
for (ll k = 0; k < 10; ++k) {
ll a = rand() % (p - 2) + 2;
ll x = qpow(a, d, p);
if (x == 1 || x == p - 1) continue;
for (int i = 0; i < r - 1; ++i) {
x = bmul(x, x, p);
if (x == p - 1) break;
}
if (x != p - 1) return false;
}
return true;
}
ll Pollard_Rho(ll x) {
ll s = 0, t = 0;
ll c = (ll)rand() % (x - 1) + 1;
int step = 0, goal = 1;
ll val = 1;
for (goal = 1;; goal *= 2, s = t, val = 1) { // 倍增优化
for (step = 1; step <= goal; ++step) {
t = (bmul(t, t, x) + c) % x;
val = bmul(val, abs(t - s), x);
if ((step % 127) == 0) {
ll d = gcd(val, x);
if (d > 1) return d;
}
}
ll d = gcd(val, x);
if (d > 1) return d;
}
}
void fac(ll x) {
if (x <= max_factor || x < 2) return;
if (Miller_Rabin(x)) { // 如果x为质数
max_factor = max(max_factor, x); // 更新答案
return;
}
ll p = x;
while (p >= x) p = Pollard_Rho(x); // 使用该算法
while ((x % p) == 0) x /= p;
fac(x), fac(p); // 继续向下分解x和p
}
bool tf[N];
vector<int> p;
ll n,x,y;
ll a[N];
void print(__int128 x){
if(x>=10) print(x/10);
int t=x%10;
printf("%d",t);
}
void __(){
srand((unsigned)time(NULL));
cin>>n>>x>>y;
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
vector<PII> zyz;
while(x>1){
max_factor=0;
fac(x);
ll cnt=0;
while(x%max_factor==0){
cnt++;
x/=max_factor;
}
zyz.push_back({max_factor,cnt});
}
__int128 ans=1e30;
for(auto [j,w]:zyz){
__int128 tot=0;
ll res=y;
while(res>0){
tot+=res/j;
res/=j;
}
for(int i=1;i<=n;i++){
ll res=a[i];
while(res>0){
tot-=res/j;
res/=j;
}
}
ans=min(ans,tot/w);
}
print(ans);
puts("");
}
int main() {
srand(time(0));
for(int i=2;i<N;i++){
if(!tf[i]) p.push_back(i);
for(int j=0;1ll*p[j]*i<N;j++){
tf[i*p[j]]=1;
if(i%p[j]==0) break;
}
}
cin >> t;
while (t--) {
__();
}
return 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 6ms
memory: 6256kb
input:
2 3 10 10 2 3 4 2 2 10 1 1
output:
2 8
result:
ok 2 number(s): "2 8"
Test #2:
score: 0
Accepted
time: 9ms
memory: 6260kb
input:
8 929 98210021061137 164832982985885580 43576998167336 157303878397705 212661169553039 169068044677212 17733912750082 101059786177542 56528418806042 170741049344189 128297164019222 208810463591190 96264177952672 70816863413347 116985928070432 56330014332760 10006522486360 110959002803542 15298525649...
output:
1059 95837140 1761303730724 3810060773695 8961243000749 8657430203778550 2603387692898890 569502267311933
result:
ok 8 numbers
Test #3:
score: 0
Accepted
time: 102ms
memory: 8164kb
input:
8 92894 80454414905270281 520643152573491735 2064229122797 4223622787947 1054260245418 4094316313084 3929142530824 6452342289094 3762455615113 3157146960681 5603173442583 1875814573143 1801348242678 2409547278342 6854531398370 1240913563145 1848446319539 1493011800303 5389461335879 7286083232997 579...
output:
6 114168802 81596535601 11028882122096 100316204821427 4718268084920428 394167331265621 539500856199383
result:
ok 8 numbers
Test #4:
score: 0
Accepted
time: 116ms
memory: 6828kb
input:
8 92894 8280090210874177 543856067505017676 7628166265475 4448095856140 3732480525951 6624251584927 2217648228673 2129611741353 2848644172912 8103647146535 1467047865398 2185292600211 1765086497170 6371594269098 8613841584311 6848101874651 718312212561 4093427071182 2289683844966 6915866934586 51966...
output:
65 1246786758 333319010645 13129729242598 84397513456572 1419008292818811 145866895461700 594315405335288
result:
ok 8 numbers
Test #5:
score: 0
Accepted
time: 105ms
memory: 6856kb
input:
8 92894 98210021061137 164832982985885580 437808801937 1580398501813 2136561393792 1698590570197 178168838012 1015326106916 567928960914 1715398889850 1288974230710 2097874172186 967145654868 711481916793 1175332657008 565935634477 100533395596 1114781424652 1537010227806 201374141170 2002549530277 ...
output:
1678 15138363549 3851961323533 9546266194484 65456023237176 50284070499384881 2136489879131768 343921703953617
result:
ok 8 numbers
Test #6:
score: 0
Accepted
time: 10ms
memory: 6384kb
input:
8 929 904648320997198759 857077283552821319 576128640757999 1022489209332927 342306048548590 328717138574533 439703699384584 1250841949052893 226446805904869 337311781446902 272450687310201 983490180331727 1329593231427121 1057041717229744 110875391163525 631842700541257 353425137200360 106750162246...
output:
0 14963454 29504132475 203878226275 8778367031870 15079682243266455 149351201237842 2430883872230178
result:
ok 8 numbers
Test #7:
score: 0
Accepted
time: 97ms
memory: 6896kb
input:
8 92894 904648320997198759 857077283552821319 5796497585331 10287383430483 3443981158080 3307261546850 4423910306892 12584867031801 2278307777449 3393733253885 2741158205233 9895009642558 13377192887408 10635020251022 1115530268804 6357043250803 3555851608183 10740258578761 8070377462103 13134968899...
output:
0 21583598 4114016689 5953125168816 9610340743247 133189637386353298 124668826875053 21617048982826
result:
ok 8 numbers