QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#890777 | #9042. Fast Bogosort | tonosama (Tatsuhito Yamagata, Yasunori Kinoshita, Kosuke Kaneshita)# | AC ✓ | 155ms | 10016kb | C++17 | 36.9kb | 2025-02-09 02:52:30 | 2025-02-09 02:52:37 |
Judging History
answer
#line 1 "a.cpp"
#include <bits/stdc++.h>
using namespace std;
using ll=long long;
using ld=long double;
const ll ILL=2167167167167167167;
const int INF=2100000000;
#define rep(i,a,b) for (int i=(int)(a);i<(int)(b);i++)
#define all(p) p.begin(),p.end()
template<class T> using _pq = priority_queue<T, vector<T>, greater<T>>;
template<class T> int LB(vector<T> &v,T a){return lower_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> int UB(vector<T> &v,T a){return upper_bound(v.begin(),v.end(),a)-v.begin();}
template<class T> bool chmin(T &a,T b){if(b<a){a=b;return 1;}else return 0;}
template<class T> bool chmax(T &a,T b){if(a<b){a=b;return 1;}else return 0;}
template<class T> void So(vector<T> &v) {sort(v.begin(),v.end());}
template<class T> void Sore(vector<T> &v) {sort(v.begin(),v.end(),[](T x,T y){return x>y;});}
bool yneos(bool a,bool upp=false){if(a){cout<<(upp?"YES\n":"Yes\n");}else{cout<<(upp?"NO\n":"No\n");}return a;}
template<class T> void vec_out(vector<T> &p,int ty=0){
if(ty==2){cout<<'{';for(int i=0;i<(int)p.size();i++){if(i){cout<<",";}cout<<'"'<<p[i]<<'"';}cout<<"}\n";}
else{if(ty==1){cout<<p.size()<<"\n";}for(int i=0;i<(int)(p.size());i++){if(i) cout<<" ";cout<<p[i];}cout<<"\n";}}
template<class T> T vec_min(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmin(ans,x);return ans;}
template<class T> T vec_max(vector<T> &a){assert(!a.empty());T ans=a[0];for(auto &x:a) chmax(ans,x);return ans;}
template<class T> T vec_sum(vector<T> &a){T ans=T(0);for(auto &x:a) ans+=x;return ans;}
int pop_count(long long a){int res=0;while(a){res+=(a&1),a>>=1;}return res;}
template<class T> T square(T a){return a * a;}
#include <algorithm>
#include <array>
#include <cassert>
#include <type_traits>
#include <vector>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if __cplusplus >= 202002L
#include <bit>
#endif
namespace atcoder {
namespace internal {
#if __cplusplus >= 202002L
using std::bit_ceil;
#else
// @return same with std::bit::bit_ceil
unsigned int bit_ceil(unsigned int n) {
unsigned int x = 1;
while (x < (unsigned int)(n)) x *= 2;
return x;
}
#endif
// @param n `1 <= n`
// @return same with std::bit::countr_zero
int countr_zero(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
// @param n `1 <= n`
// @return same with std::bit::countr_zero
constexpr int countr_zero_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
namespace atcoder {
namespace internal {
template <class mint,
int g = internal::primitive_root<mint::mod()>,
internal::is_static_modint_t<mint>* = nullptr>
struct fft_info {
static constexpr int rank2 = countr_zero_constexpr(mint::mod() - 1);
std::array<mint, rank2 + 1> root; // root[i]^(2^i) == 1
std::array<mint, rank2 + 1> iroot; // root[i] * iroot[i] == 1
std::array<mint, std::max(0, rank2 - 2 + 1)> rate2;
std::array<mint, std::max(0, rank2 - 2 + 1)> irate2;
std::array<mint, std::max(0, rank2 - 3 + 1)> rate3;
std::array<mint, std::max(0, rank2 - 3 + 1)> irate3;
fft_info() {
root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2);
iroot[rank2] = root[rank2].inv();
for (int i = rank2 - 1; i >= 0; i--) {
root[i] = root[i + 1] * root[i + 1];
iroot[i] = iroot[i + 1] * iroot[i + 1];
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 2; i++) {
rate2[i] = root[i + 2] * prod;
irate2[i] = iroot[i + 2] * iprod;
prod *= iroot[i + 2];
iprod *= root[i + 2];
}
}
{
mint prod = 1, iprod = 1;
for (int i = 0; i <= rank2 - 3; i++) {
rate3[i] = root[i + 3] * prod;
irate3[i] = iroot[i + 3] * iprod;
prod *= iroot[i + 3];
iprod *= root[i + 3];
}
}
}
};
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len < h) {
if (h - len == 1) {
int p = 1 << (h - len - 1);
mint rot = 1;
for (int s = 0; s < (1 << len); s++) {
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * rot;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
if (s + 1 != (1 << len))
rot *= info.rate2[countr_zero(~(unsigned int)(s))];
}
len++;
} else {
// 4-base
int p = 1 << (h - len - 2);
mint rot = 1, imag = info.root[2];
for (int s = 0; s < (1 << len); s++) {
mint rot2 = rot * rot;
mint rot3 = rot2 * rot;
int offset = s << (h - len);
for (int i = 0; i < p; i++) {
auto mod2 = 1ULL * mint::mod() * mint::mod();
auto a0 = 1ULL * a[i + offset].val();
auto a1 = 1ULL * a[i + offset + p].val() * rot.val();
auto a2 = 1ULL * a[i + offset + 2 * p].val() * rot2.val();
auto a3 = 1ULL * a[i + offset + 3 * p].val() * rot3.val();
auto a1na3imag =
1ULL * mint(a1 + mod2 - a3).val() * imag.val();
auto na2 = mod2 - a2;
a[i + offset] = a0 + a2 + a1 + a3;
a[i + offset + 1 * p] = a0 + a2 + (2 * mod2 - (a1 + a3));
a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
a[i + offset + 3 * p] = a0 + na2 + (mod2 - a1na3imag);
}
if (s + 1 != (1 << len))
rot *= info.rate3[countr_zero(~(unsigned int)(s))];
}
len += 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
void butterfly_inv(std::vector<mint>& a) {
int n = int(a.size());
int h = internal::countr_zero((unsigned int)n);
static const fft_info<mint> info;
int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
while (len) {
if (len == 1) {
int p = 1 << (h - len);
mint irot = 1;
for (int s = 0; s < (1 << (len - 1)); s++) {
int offset = s << (h - len + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mint::mod() + l.val() - r.val()) *
irot.val();
;
}
if (s + 1 != (1 << (len - 1)))
irot *= info.irate2[countr_zero(~(unsigned int)(s))];
}
len--;
} else {
// 4-base
int p = 1 << (h - len);
mint irot = 1, iimag = info.iroot[2];
for (int s = 0; s < (1 << (len - 2)); s++) {
mint irot2 = irot * irot;
mint irot3 = irot2 * irot;
int offset = s << (h - len + 2);
for (int i = 0; i < p; i++) {
auto a0 = 1ULL * a[i + offset + 0 * p].val();
auto a1 = 1ULL * a[i + offset + 1 * p].val();
auto a2 = 1ULL * a[i + offset + 2 * p].val();
auto a3 = 1ULL * a[i + offset + 3 * p].val();
auto a2na3iimag =
1ULL *
mint((mint::mod() + a2 - a3) * iimag.val()).val();
a[i + offset] = a0 + a1 + a2 + a3;
a[i + offset + 1 * p] =
(a0 + (mint::mod() - a1) + a2na3iimag) * irot.val();
a[i + offset + 2 * p] =
(a0 + a1 + (mint::mod() - a2) + (mint::mod() - a3)) *
irot2.val();
a[i + offset + 3 * p] =
(a0 + (mint::mod() - a1) + (mint::mod() - a2na3iimag)) *
irot3.val();
}
if (s + 1 != (1 << (len - 2)))
irot *= info.irate3[countr_zero(~(unsigned int)(s))];
}
len -= 2;
}
}
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_naive(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
std::vector<mint> ans(n + m - 1);
if (n < m) {
for (int j = 0; j < m; j++) {
for (int i = 0; i < n; i++) {
ans[i + j] += a[i] * b[j];
}
}
} else {
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
ans[i + j] += a[i] * b[j];
}
}
}
return ans;
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution_fft(std::vector<mint> a, std::vector<mint> b) {
int n = int(a.size()), m = int(b.size());
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
a.resize(z);
internal::butterfly(a);
b.resize(z);
internal::butterfly(b);
for (int i = 0; i < z; i++) {
a[i] *= b[i];
}
internal::butterfly_inv(a);
a.resize(n + m - 1);
mint iz = mint(z).inv();
for (int i = 0; i < n + m - 1; i++) a[i] *= iz;
return a;
}
} // namespace internal
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(std::vector<mint>&& a, std::vector<mint>&& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <class mint, internal::is_static_modint_t<mint>* = nullptr>
std::vector<mint> convolution(const std::vector<mint>& a,
const std::vector<mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
if (std::min(n, m) <= 60) return convolution_naive(a, b);
return internal::convolution_fft(a, b);
}
template <unsigned int mod = 998244353,
class T,
std::enable_if_t<internal::is_integral<T>::value>* = nullptr>
std::vector<T> convolution(const std::vector<T>& a, const std::vector<T>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
using mint = static_modint<mod>;
int z = (int)internal::bit_ceil((unsigned int)(n + m - 1));
assert((mint::mod() - 1) % z == 0);
std::vector<mint> a2(n), b2(m);
for (int i = 0; i < n; i++) {
a2[i] = mint(a[i]);
}
for (int i = 0; i < m; i++) {
b2[i] = mint(b[i]);
}
auto c2 = convolution(std::move(a2), std::move(b2));
std::vector<T> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
c[i] = c2[i].val();
}
return c;
}
std::vector<long long> convolution_ll(const std::vector<long long>& a,
const std::vector<long long>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
static constexpr unsigned long long MOD1 = 754974721; // 2^24
static constexpr unsigned long long MOD2 = 167772161; // 2^25
static constexpr unsigned long long MOD3 = 469762049; // 2^26
static constexpr unsigned long long M2M3 = MOD2 * MOD3;
static constexpr unsigned long long M1M3 = MOD1 * MOD3;
static constexpr unsigned long long M1M2 = MOD1 * MOD2;
static constexpr unsigned long long M1M2M3 = MOD1 * MOD2 * MOD3;
static constexpr unsigned long long i1 =
internal::inv_gcd(MOD2 * MOD3, MOD1).second;
static constexpr unsigned long long i2 =
internal::inv_gcd(MOD1 * MOD3, MOD2).second;
static constexpr unsigned long long i3 =
internal::inv_gcd(MOD1 * MOD2, MOD3).second;
static constexpr int MAX_AB_BIT = 24;
static_assert(MOD1 % (1ull << MAX_AB_BIT) == 1, "MOD1 isn't enough to support an array length of 2^24.");
static_assert(MOD2 % (1ull << MAX_AB_BIT) == 1, "MOD2 isn't enough to support an array length of 2^24.");
static_assert(MOD3 % (1ull << MAX_AB_BIT) == 1, "MOD3 isn't enough to support an array length of 2^24.");
assert(n + m - 1 <= (1 << MAX_AB_BIT));
auto c1 = convolution<MOD1>(a, b);
auto c2 = convolution<MOD2>(a, b);
auto c3 = convolution<MOD3>(a, b);
std::vector<long long> c(n + m - 1);
for (int i = 0; i < n + m - 1; i++) {
unsigned long long x = 0;
x += (c1[i] * i1) % MOD1 * M2M3;
x += (c2[i] * i2) % MOD2 * M1M3;
x += (c3[i] * i3) % MOD3 * M1M2;
// B = 2^63, -B <= x, r(real value) < B
// (x, x - M, x - 2M, or x - 3M) = r (mod 2B)
// r = c1[i] (mod MOD1)
// focus on MOD1
// r = x, x - M', x - 2M', x - 3M' (M' = M % 2^64) (mod 2B)
// r = x,
// x - M' + (0 or 2B),
// x - 2M' + (0, 2B or 4B),
// x - 3M' + (0, 2B, 4B or 6B) (without mod!)
// (r - x) = 0, (0)
// - M' + (0 or 2B), (1)
// -2M' + (0 or 2B or 4B), (2)
// -3M' + (0 or 2B or 4B or 6B) (3) (mod MOD1)
// we checked that
// ((1) mod MOD1) mod 5 = 2
// ((2) mod MOD1) mod 5 = 3
// ((3) mod MOD1) mod 5 = 4
long long diff =
c1[i] - internal::safe_mod((long long)(x), (long long)(MOD1));
if (diff < 0) diff += MOD1;
static constexpr unsigned long long offset[5] = {
0, 0, M1M2M3, 2 * M1M2M3, 3 * M1M2M3};
x -= offset[diff % 5];
c[i] = x;
}
return c;
}
} // namespace atcoder
using mint = atcoder::modint998244353;
#line 2 "/Users/Shared/po167_library/math/Binomial.hpp"
#line 5 "/Users/Shared/po167_library/math/Binomial.hpp"
namespace po167{
template<class T>
struct Binomial{
std::vector<T> fact_vec, fact_inv_vec;
void extend(int m = -1){
int n = fact_vec.size();
if (m == -1) m = n * 2;
if (n >= m) return;
fact_vec.resize(m);
fact_inv_vec.resize(m);
for (int i = n; i < m; i++){
fact_vec[i] = fact_vec[i - 1] * T(i);
}
fact_inv_vec[m - 1] = T(1) / fact_vec[m - 1];
for (int i = m - 1; i > n; i--){
fact_inv_vec[i - 1] = fact_inv_vec[i] * T(i);
}
}
Binomial(int MAX = 0){
fact_vec.resize(1, T(1));
fact_inv_vec.resize(1, T(1));
extend(MAX + 1);
}
T fact(int i){
if (i < 0) return 0;
while (int(fact_vec.size()) <= i) extend();
return fact_vec[i];
}
T invfact(int i){
if (i < 0) return 0;
while (int(fact_inv_vec.size()) <= i) extend();
return fact_inv_vec[i];
}
T C(int a, int b){
if (a < b || b < 0) return 0;
return fact(a) * invfact(b) * invfact(a - b);
}
T invC(int a, int b){
if (a < b || b < 0) return 0;
return fact(b) * fact(a - b) *invfact(a);
}
T P(int a, int b){
if (a < b || b < 0) return 0;
return fact(a) * invfact(a - b);
}
T inv(int a){
if (a < 0) return inv(-a) * T(-1);
if (a == 0) return 1;
return fact(a - 1) * invfact(a);
}
T Catalan(int n){
if (n < 0) return 0;
return fact(2 * n) * invfact(n + 1) * invfact(n);
}
T narayana(int n, int k){
if (n <= 0 || n < k || k < 1) return 0;
return C(n, k) * C(n, k - 1) * inv(n);
}
T Catalan_pow(int n,int d){
if (n < 0 || d < 0) return 0;
if (d == 0){
if (n == 0) return 1;
return 0;
}
return T(d) * inv(d + n) * C(2 * n + d - 1, n);
}
// retrun [x^a] 1/(1-x)^b
T ruiseki(int a,int b){
if (a < 0 || b < 0) return 0;
if (a == 0){
return 1;
}
return C(a + b - 1, b - 1);
}
// (a, b) -> (c, d)
// always x + e >= y
T mirror(int a, int b, int c, int d, int e = 0){
if (a + e < b || c + e < d) return 0;
if (a > c || b > d) return 0;
a += e;
c += e;
return C(c + d - a - b, c - a) - C(c + d - a - b, c - b + 1);
}
// return sum_{i = 0, ... , a} sum_{j = 0, ... , b} C(i + j, i)
// return C(a + b + 2, a + 1) - 1;
T gird_sum(int a, int b){
if (a < 0 || b < 0) return 0;
return C(a + b + 2, a + 1) - 1;
}
// return sum_{i = a, ..., b - 1} sum_{j = c, ... , d - 1} C(i + j, i)
// AGC 018 E
T gird_sum_2(int a, int b, int c, int d){
if (a >= b || c >= d) return 0;
a--, b--, c--, d--;
return gird_sum(a, c) - gird_sum(a, d) - gird_sum(b, c) + gird_sum(b, d);
}
// the number of diagonal dissections of a convex n-gon into k+1 regions.
// OEIS A033282
// AGC065D
T diagonal(int n, int k){
if (n <= 2 || n - 3 < k || k < 0) return 0;
return C(n - 3, k) * C(n + k - 1, k) * inv(k + 1);
}
};
}
#line 4 "/Users/Shared/po167_library/fps/FPS_inv.hpp"
namespace po167{
// return 1 / f
template <class T>
std::vector<T> FPS_inv(std::vector<T> f, int len = -1){
if (len == -1) len = f.size();
assert(f[0] != 0);
std::vector<T> g = {1 / f[0]};
int s = 1;
while(s < len){
// g = 2g_s - f(g_s)^2 (mod x ^ (2 * s))
// g = g - (fg - 1)g
// (fg - 1) = 0 (mod x ^ (s))
std::vector<T> n_g(s * 2, 0);
std::vector<T> f_s(s * 2, 0);
g.resize(s * 2);
for (int i = 0; i < s * 2; i++){
if (int(f.size()) > i) f_s[i] = f[i];
n_g[i] = g[i];
}
atcoder::internal::butterfly(g);
atcoder::internal::butterfly(f_s);
for (int i = 0; i < s * 2; i++){
f_s[i] *= g[i];
}
atcoder::internal::butterfly_inv(f_s);
T iz = 1 / (T)(s * 2);
for (int i = s; i < s * 2; i++){
f_s[i] *= iz;
}
for (int i = 0; i < s; i++){
f_s[i] = 0;
}
atcoder::internal::butterfly(f_s);
for (int i = 0; i < s * 2; i++){
f_s[i] *= g[i];
}
atcoder::internal::butterfly_inv(f_s);
for (int i = s; i < s * 2; i++){
n_g[i] -= f_s[i] * iz;
}
std::swap(n_g, g);
s *= 2;
}
g.resize(len);
return g;
}
}
#line 30 "a.cpp"
void solve();
// CITRUS CURIO CITY / FREDERIC
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
int t = 1;
// cin >> t;
rep(i, 0, t) solve();
}
void solve(){
int N;
cin >> N;
vector<int> P(N);
rep(i, 0, N) cin >> P[i], P[i]--;
po167::Binomial<mint> table;
vector<mint> A(N + 1);
rep(i, 0, N + 1) A[i] = table.fact(i);
A = po167::FPS_inv(A);
rep(i, 0, N + 1) A[i] *= -1;
vector<mint> C(N + 1);
vector<mint> D(N + 1);
rep(i, 0, N + 1) D[i] = table.fact(i);
D = atcoder::convolution(D, D);
auto f = [&](auto self, int l, int r) -> void {
if (l + 1 == r){
if (l == 1) return;
C[l] *= table.invfact(l);
C[l] += 1;
C[l] *= (table.fact(l) - A[l]).inv();
C[l] *= table.fact(l);
return;
}
int m = (l + r) / 2;
self(self, l, m);
vector<mint> tmp1(m - l);
vector<mint> tmp2(r - l);
rep(i, l, m) tmp1[i - l] = C[i] * A[i];
rep(i, l, r) tmp2[i - l] = D[i - l];
auto tmp3 = atcoder::convolution(tmp1, tmp2);
rep(i, m, r) C[i] += tmp3[i - l];
self(self, m, r);
};
f(f, 1, N + 1);
mint ans = 0;
int F = -1, mx = 0;
rep(i, 0, N){
chmax(mx, P[i]);
if (mx == i){
ans += C[mx - F];
F = mx;
}
}
cout << ans.val() << "\n";
}
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3712kb
input:
5 2 1 5 3 4
output:
332748123
result:
ok 1 number(s): "332748123"
Test #2:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
10 4 2 3 1 6 5 9 7 10 8
output:
453747445
result:
ok 1 number(s): "453747445"
Test #3:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
1 1
output:
0
result:
ok 1 number(s): "0"
Test #4:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
100 76 73 11 3 60 77 27 93 12 86 40 66 36 2 49 65 17 39 4 20 5 72 67 61 6 35 43 64 58 96 24 68 88 99 94 81 52 13 71 45 32 15 78 85 46 44 55 95 21 53 9 48 26 47 75 33 34 14 70 90 100 62 23 29 22 41 63 84 59 80 38 56 69 25 92 31 50 74 51 87 30 19 91 28 42 89 82 83 97 16 37 54 1 98 10 18 8 57 7 79
output:
508737759
result:
ok 1 number(s): "508737759"
Test #5:
score: 0
Accepted
time: 0ms
memory: 3840kb
input:
1000 644 749 436 202 582 786 943 410 790 963 151 352 625 18 731 435 184 758 614 897 257 917 910 402 589 825 134 380 832 547 77 9 956 229 448 568 769 163 255 364 363 868 148 168 407 663 928 886 450 854 546 994 902 517 793 700 677 936 799 958 475 558 350 650 135 728 768 118 789 231 322 455 221 438 317...
output:
679753239
result:
ok 1 number(s): "679753239"
Test #6:
score: 0
Accepted
time: 149ms
memory: 9888kb
input:
100000 73995 97531 73688 16747 13958 91688 67443 27446 19321 76786 84775 67782 50687 46881 24663 30944 52408 88244 25123 73060 26112 21434 89167 40474 48955 7460 39368 85932 58361 5973 55773 52839 31407 22934 66635 51540 12512 2579 16556 74872 88172 39911 20556 99234 48914 97168 60821 47627 45539 20...
output:
890612070
result:
ok 1 number(s): "890612070"
Test #7:
score: 0
Accepted
time: 151ms
memory: 9888kb
input:
100000 75639 75018 56529 53744 97883 13810 42035 21043 11904 37776 66333 31553 82625 47621 18443 36067 36565 17637 37034 21085 10887 40242 76683 90743 58636 53510 13083 67050 36592 26238 24625 77890 36480 12131 9739 54629 22636 91688 93885 13773 59255 5228 32255 91075 95398 20112 6931 92388 78047 55...
output:
890612070
result:
ok 1 number(s): "890612070"
Test #8:
score: 0
Accepted
time: 148ms
memory: 10012kb
input:
100000 6365 78742 79932 37888 33087 27426 32649 32057 47518 99279 43260 73945 55233 82364 94282 40764 46484 47000 68011 87455 18440 38672 77423 91903 52861 5406 36397 57738 97560 89551 66432 6075 53328 50420 46057 49025 2212 5425 22322 83098 73958 18694 54172 30402 9877 47903 74697 32095 26271 46989...
output:
890612070
result:
ok 1 number(s): "890612070"
Test #9:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
2 2 1
output:
2
result:
ok 1 number(s): "2"
Test #10:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
3 3 1 2
output:
332748121
result:
ok 1 number(s): "332748121"
Test #11:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
4 2 4 1 3
output:
725995898
result:
ok 1 number(s): "725995898"
Test #12:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
5 4 1 3 5 2
output:
181498980
result:
ok 1 number(s): "181498980"
Test #13:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
6 5 3 2 1 6 4
output:
231603911
result:
ok 1 number(s): "231603911"
Test #14:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
7 5 1 4 2 7 3 6
output:
962358036
result:
ok 1 number(s): "962358036"
Test #15:
score: 0
Accepted
time: 1ms
memory: 3712kb
input:
8 4 2 8 7 3 1 6 5
output:
612851697
result:
ok 1 number(s): "612851697"
Test #16:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
9 2 9 3 6 1 5 4 8 7
output:
375472763
result:
ok 1 number(s): "375472763"
Test #17:
score: 0
Accepted
time: 0ms
memory: 3712kb
input:
10 10 4 5 1 8 9 2 6 3 7
output:
352546511
result:
ok 1 number(s): "352546511"
Test #18:
score: 0
Accepted
time: 151ms
memory: 10016kb
input:
100000 1 2 3 4 6 5 7 9 10 8 12 11 13 14 15 16 17 18 19 22 24 21 25 20 23 27 26 29 28 30 33 31 32 34 35 39 36 37 38 40 42 41 43 44 46 45 48 47 49 50 51 52 53 54 55 56 57 59 58 61 60 62 63 64 65 66 67 69 68 70 72 71 74 73 75 76 78 79 77 80 82 81 83 84 85 86 87 88 90 89 91 92 93 94 95 98 96 97 100 99 1...
output:
210320684
result:
ok 1 number(s): "210320684"
Test #19:
score: 0
Accepted
time: 147ms
memory: 9888kb
input:
100000 1 2 3 4 5 6 7 8 11 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 35 37 38 40 39 41 43 42 45 44 46 47 50 49 48 51 52 53 54 56 55 57 59 58 60 61 62 63 65 64 68 66 67 69 71 70 73 72 75 74 76 78 77 81 79 80 82 83 84 85 86 87 88 89 91 90 92 93 94 95 97 96 99 98 101 1...
output:
270035219
result:
ok 1 number(s): "270035219"
Test #20:
score: 0
Accepted
time: 151ms
memory: 9884kb
input:
100000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 60 59 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 78 77 79 80 81 82 83 84 85 86 87 88 89 91 90 92 93 95 94 96 97 98 99 100 1...
output:
605008306
result:
ok 1 number(s): "605008306"
Test #21:
score: 0
Accepted
time: 147ms
memory: 9892kb
input:
100000 2 1 4 5 3 7 6 9 8 12 11 10 14 13 15 17 18 16 19 21 20 23 24 22 25 26 27 28 30 29 32 31 34 33 36 37 35 38 39 41 40 43 42 46 44 48 45 47 50 49 51 52 53 54 58 57 55 56 62 60 59 61 67 68 69 65 70 66 63 64 71 72 73 75 74 77 76 79 78 82 81 83 80 86 84 85 87 88 89 93 90 91 92 96 94 95 97 99 98 101 1...
output:
495537170
result:
ok 1 number(s): "495537170"
Test #22:
score: 0
Accepted
time: 150ms
memory: 9888kb
input:
100000 63073 28667 90975 30352 3761 94190 79972 43048 21778 33653 36197 15091 608 19719 989 52387 77322 60994 47624 43439 23816 67364 99594 78540 14592 23284 76709 93993 91131 92333 87166 76515 65187 93200 55352 73418 5417 62724 89224 44808 30562 77028 86252 62548 60089 72547 31563 68303 9267 37119 ...
output:
890612070
result:
ok 1 number(s): "890612070"
Test #23:
score: 0
Accepted
time: 154ms
memory: 10012kb
input:
100000 40205 6086 18833 72928 8675 2421 39538 10358 33411 19062 21955 49175 25071 356 53723 1249 39168 4166 41373 71509 7236 19815 51707 28958 19596 12000 34436 64228 24654 13516 37785 58526 64106 67407 22334 38939 8020 50688 75295 37521 32185 64781 4779 34223 22027 69356 44383 22618 23734 15468 270...
output:
88556225
result:
ok 1 number(s): "88556225"
Test #24:
score: 0
Accepted
time: 147ms
memory: 10012kb
input:
100000 13177 13025 19647 20671 21372 25297 23161 25709 9980 18962 26049 259 15667 5396 19714 25946 7421 19163 8310 5203 7356 22748 21994 16406 8927 4437 13123 11514 25572 20363 2776 8988 6884 10095 13026 16181 3703 321 5459 19285 17305 25129 13822 13685 23863 5389 9401 2056 22066 13275 13133 2023 90...
output:
249803513
result:
ok 1 number(s): "249803513"
Test #25:
score: 0
Accepted
time: 151ms
memory: 9780kb
input:
100000 118 359 351 462 171 279 312 125 315 362 249 425 194 356 226 436 204 122 87 331 398 127 73 278 384 262 377 299 129 242 264 212 215 75 82 392 36 417 407 382 102 210 4 21 130 136 361 461 410 432 319 420 427 292 443 180 261 197 63 370 459 92 151 214 454 158 396 74 376 435 287 386 199 437 348 441 ...
output:
224837018
result:
ok 1 number(s): "224837018"
Test #26:
score: 0
Accepted
time: 152ms
memory: 9780kb
input:
100000 16 60 89 57 102 10 94 39 1 62 49 76 61 82 105 17 42 63 9 47 69 7 31 87 50 21 71 43 3 114 54 25 32 93 115 81 36 118 79 34 58 88 29 91 5 56 66 117 80 104 83 55 108 75 95 18 112 101 113 100 41 96 6 14 35 107 84 85 38 45 33 103 59 22 28 68 8 11 26 98 110 116 2 78 97 12 86 46 111 53 92 15 65 77 44...
output:
831156714
result:
ok 1 number(s): "831156714"
Test #27:
score: 0
Accepted
time: 155ms
memory: 10012kb
input:
100000 10 22 8 13 20 3 9 14 11 12 15 7 19 16 21 17 23 18 1 4 2 6 5 25 24 29 27 28 26 31 30 44 34 32 38 37 41 43 36 39 40 42 46 33 35 45 48 47 53 49 50 51 52 54 57 58 61 60 56 64 65 55 66 63 59 62 68 67 72 70 69 71 77 76 80 74 75 73 81 78 79 82 85 84 83 88 89 86 87 102 106 103 98 93 100 94 96 105 101...
output:
374593697
result:
ok 1 number(s): "374593697"
Test #28:
score: 0
Accepted
time: 152ms
memory: 10012kb
input:
100000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 1...
output:
0
result:
ok 1 number(s): "0"
Test #29:
score: 0
Accepted
time: 149ms
memory: 9780kb
input:
100000 40 48 75 84 93 34 1 12 16 8 22 96 68 55 74 70 59 52 24 19 78 2 63 43 39 18 54 32 89 42 57 47 6 72 28 35 9 95 20 29 67 64 37 71 38 41 46 77 61 88 3 5 87 80 51 65 17 86 82 90 97 98 73 36 44 62 60 49 25 27 83 13 10 11 58 14 66 15 4 7 56 30 33 81 99 31 23 76 85 21 91 92 45 26 50 94 69 79 53 135 1...
output:
577674591
result:
ok 1 number(s): "577674591"
Test #30:
score: 0
Accepted
time: 153ms
memory: 9844kb
input:
100000 3 1 2 5 6 4 10 9 8 7 11 19 17 14 16 13 12 15 18 24 20 22 21 25 23 27 26 28 30 29 31 36 34 35 33 37 32 39 40 38 43 45 41 42 46 44 48 47 50 49 51 53 52 56 54 58 55 59 57 60 62 64 61 63 67 66 65 69 72 68 75 73 74 71 70 98 78 102 77 93 86 92 85 96 79 99 84 83 81 91 87 97 89 94 100 82 103 80 95 10...
output:
516708075
result:
ok 1 number(s): "516708075"
Extra Test:
score: 0
Extra Test Passed