QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#884364#9547. Two Convex HolesUESTC_NLNSWA 95ms4096kbC++204.8kb2025-02-06 01:03:212025-02-06 01:03:21

Judging History

This is the latest submission verdict.

  • [2025-02-06 01:03:21]
  • Judged
  • Verdict: WA
  • Time: 95ms
  • Memory: 4096kb
  • [2025-02-06 01:03:21]
  • Submitted

answer

#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>

using namespace std;
using ldb = long double;
struct pt {
    ldb x, y;
    pt operator+(const pt& o) const { return {x + o.x, y + o.y}; };
    pt operator-(const pt& o) const { return {x - o.x, y - o.y}; };
    pt operator*(const ldb o) const { return {x * o, y * o}; };
    ldb operator*(const pt& o) const { return o.x * x + o.y * y; }
    ldb operator^(const pt& o) const { return x * o.y - y * o.x; }
};

pt rotate(const pt& a, const pt& v2) {
    return {v2 * a, v2 ^ a};
}
struct seg {
    pt a, b;
    bool operator<(const seg& o) const {
        if (a.y != o.a.y) a.y < o.a.y;
        return b.y < o.b.y;
    }
    pt at(ldb y) const {
        return (b * (y - a.y) + a * (b.y - y)) * (1 / (b.y - a.y));
    }
};
struct poly {
    ldb t, a0, a1, a2, a3;
    bool operator<(const poly& o) const { return t < o.t; }
};
struct item {
    ldb t, v1, v2;
};

void solve() {
    pt a0, v;
    ldb z0, z1, z2;
    cin >> a0.x >> a0.y >> z0 >> v.x >> v.y;
    int n1, n2;
    cin >> n1 >> z1;
    vector<pt> c1(n1);
    for (int i = 0; i < n1; ++i) cin >> c1[i].x >> c1[i].y;
    cin >> n2 >> z2;
    vector<pt> c2(n2);
    for (int i = 0; i < n2; ++i) cin >> c2[i].x >> c2[i].y;
    ldb alp1 = z0 / (z0 - z1);
    ldb alp2 = z0 / (z0 - z2);
    v = v * (alp1 - alp2);
    ldb beta = sqrtl(v * v);
    v = v * (1 / beta);
    for (auto& u : c1) u = rotate((u - a0) * alp1, v);
    for (auto& u : c2) u = rotate((u - a0) * alp2, v);
    vector<seg> s1, s2, s3, s4;
    for (int i = 0; i < n1; ++i) {
        auto a = c1[i], b = c1[i == n1 - 1 ? 0 : i + 1];
        if (a.y > b.y)
            s1.push_back({b, a});
        else
            s2.push_back({a, b});
    }
    for (int i = 0; i < n2; ++i) {
        auto a = c2[i], b = c2[i == n2 - 1 ? 0 : i + 1];
        if (a.y > b.y)
            s3.push_back({b, a});
        else
            s4.push_back({a, b});
    }
    sort(s1.begin(), s1.end());
    sort(s2.begin(), s2.end());
    sort(s3.begin(), s3.end());
    sort(s4.begin(), s4.end());

    vector<item> q;
    auto update = [&](const seg& s, const seg& t, ldb z0, ldb z1, int f) -> void {
        if (z0 == z1) return;
        auto a = s.at(z0), b = s.at(z1);
        auto c = t.at(z0), d = t.at(z1);
        ldb t1 = c.x - a.x, t2 = d.x - b.x;
        if (t1 < t2) swap(t1, t2);
        ldb val = z1 - z0;
        if (t1 != t2) {
            q.push_back({t1, 0, f * val / (t2 - t1)});
            q.push_back({t2, 0, -f * val / (t2 - t1)});
        } else {
            q.push_back({t2, f * val, 0});
        }
    };

    int cc = 0;
    for (const auto& s : {s3, s4}) {
        for (const auto& t : {s1, s2}) {
            cc++;
            int f = cc == 1 || cc == 4 ? -1 : 1;
            ldb lst_z = max(s[0].a.y, t[0].a.y);
            for (int i = 0, j = 0; i < s.size() && j < t.size();) {
                if (s[i].b.y < t[j].a.y) {
                    i++;
                    continue;
                }
                if (t[j].b.y < s[i].a.y) {
                    j++;
                    continue;
                }
                ldb nz = min(s[i].b.y, t[j].b.y);
                update(s[i], t[j], lst_z, nz, f);
                lst_z = nz;
                if (nz == t[j].b.y)
                    j++;
                else
                    i++;
            }
        }
    }
    sort(q.begin(), q.end(), [&](const item& a, const item& b) { return a.t < b.t; });

    vector<poly> ans;
    ldb v0 = 0, v1 = 0, s = 0, ss = 0;
    ldb lt = -1e50;
    ans.push_back({lt, s, v0, v1});
    for (int i = 0; i < q.size(); ++i) {
        auto t = q[i].t;
        auto dt = t - lt;
        ss += s * dt + v0 * dt * dt / 2 + v1 * dt * dt * dt / 6;
        s += v0 * dt + v1 * dt * dt / 2;
        v0 += v1 * dt;
        v0 += q[i].v1, v1 += q[i].v2;
        lt = t;
        ans.push_back({q[i].t, ss, s, v0, v1});
    }
    auto query = [&](ldb t) -> ldb {
        auto [lt, a0, a1, a2, a3] = *(--upper_bound(ans.begin(), ans.end(), poly{t, 0, 0, 0}));
        t -= lt;
        return a0 + a1 * t + a2 * t * t / 2 + a3 * t * t * t / 6;
    };

    auto query2 = [&](ldb t) -> ldb {
        auto [lt, a0, a1, a2, a3] = *(--upper_bound(ans.begin(), ans.end(), poly{t, 0, 0, 0}));
        t -= lt;
        return a1 + a2 * t + a3 * t * t / 2;
    };
    int cq;
    cin >> cq;
    for (int i = 0; i < cq; ++i) {
        ldb t1, t2;
        cin >> t1 >> t2;
        t2 *= beta, t1 *= beta;
        ldb ans = t1 == t2 ? query2(t1) : (query(t2) - query(t1)) / (t2 - t1);
        printf("%.8LF\n", ans);
    }
}

int main() {
    cin.tie(0), cout.tie(0), ios::sync_with_stdio(0);
    int t;
    cin >> t;
    while (t--) solve();
}

详细

Test #1:

score: 100
Accepted
time: 1ms
memory: 3968kb

input:

1
0 0 3 0 -1
4 1
1 0
3 0
3 2
1 2
4 2
0 0
1 0
1 1
0 1
3
0 10
1 2
1 1

output:

0.45000000
1.12500000
2.25000000

result:

ok 3 numbers

Test #2:

score: 0
Accepted
time: 1ms
memory: 3968kb

input:

1
-5448 2169 9 731 -431
64 1
-7417 -2691
-7203 -4235
-6869 -6172
-6746 -6856
-6628 -7104
-5983 -7731
-5755 -7926
-4211 -8457
-3739 -8585
-3653 -8604
-2307 -8877
-998 -9109
-201 -9110
874 -9110
2692 -8754
2984 -8696
3438 -8597
3671 -8536
5152 -8058
5700 -7775
5892 -7619
6304 -7221
7388 -5673
7742 -51...

output:

910.01768760

result:

ok found '910.01769', expected '910.01769', error '0.00000'

Test #3:

score: -100
Wrong Answer
time: 95ms
memory: 4096kb

input:

10000
-8 -1 6 -1 -5
3 1
-7 7
-6 -3
3 6
3 4
-7 3
10 -2
-7 4
5
5 7
1 1
0 0
0 5
1 8
-10 -4 10 -8 7
5 4
-9 1
-8 -7
4 -9
5 7
3 9
5 8
-8 4
2 -10
4 -8
10 1
8 9
7
3 9
1 3
7 9
6 10
3 9
0 1
3 3
-2 9 9 4 -3
3 4
-10 10
-6 -7
8 -5
3 5
-9 1
-2 -2
7 1
3
6 7
2 7
4 5
-10 4 7 -2 5
3 3
-10 7
-8 -9
-3 10
3 4
-9 9
2 -9
...

output:

-0.00000000
-0.00000000
-0.00000000
-0.00000000
-0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
52.81830481
70.18546919
71.04629333
0.00000000
0.00000000
0.00437583
7.27590435
2.24042406
4.43672518
0.00000000
0.39874735
24.30553792
1.28024232
0.00000000
0.000...

result:

wrong answer 1162nd numbers differ - expected: '4.17909', found: '5.64583', error = '0.35097'