QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#884334 | #4408. 燃烧的呐球 | plmokn | 60 | 6780ms | 246712kb | C++14 | 10.2kb | 2025-02-06 00:10:13 | 2025-02-06 00:10:14 |
Judging History
answer
#include <bits/stdc++.h>
template <class T, class binary_op = std::plus<T>>
struct Binary_Indexed_Tree_like {
int n;
std::vector<T> tree, tree2;
binary_op comb;
T init;
std::stack<std::pair<std::vector<std::pair<int, T>>, std::vector<std::pair<int, T>>>> st;
Binary_Indexed_Tree_like(int n, const binary_op &comb = binary_op(), const T &init = T()) : n(n), tree(n, init), tree2(n, init), comb(comb), init(init) {}
static constexpr int lowbit(int x) { return x & -x; }
void add(int x, const T &y) {
std::pair<std::vector<std::pair<int, T>>, std::vector<std::pair<int, T>>> tmp;
for (int i = x + 1; i <= n; i += lowbit(i))
tmp.first.emplace_back(i - 1, tree[i - 1]), tree[i - 1] = comb(tree[i - 1], y);
for (int i = x; i > 0; i -= lowbit(i))
tmp.second.emplace_back(i - 1, tree2[i - 1]), tree2[i - 1] = comb(tree2[i - 1], y);
st.push(std::move(tmp));
return;
}
T sum(int l, int r) const {
T ans(init);
for (int i = l; i && i + lowbit(i) <= r + 1; i += lowbit(i))
ans = comb(ans, tree2[i - 1]);
for (int i = r + 1; i && i - lowbit(i) >= l; i -= lowbit(i))
ans = comb(ans, tree[i - 1]);
return ans;
}
void undo() {
for (const auto &i : st.top().first)
tree[i.first] = i.second;
for (const auto &i : st.top().second)
tree2[i.first] = i.second;
st.pop();
return;
}
};
struct tree {
int n;
std::vector<std::vector<int>> children;
std::vector<int> dfn, parent, senior, siz, top, seq, qes;
int doc;
tree(int n) : n(n), children(n) {}
void add_edge(int u, int v) {
children[u].push_back(v);
return;
}
void dfs(int x) {
siz[x] = 1;
senior[x] = -1;
for (int y : children[x]) {
parent[y] = x;
dfs(y);
siz[x] += siz[y];
if (!~senior[x] || siz[y] > siz[senior[x]])
senior[x] = y;
}
return;
}
void dfs(int x, int t) {
qes.push_back(x);
dfn[x] = doc++;
top[x] = t;
if (~senior[x])
dfs(senior[x], t);
for (int y : children[x])
if (y != senior[x])
dfs(y, y);
seq.push_back(x);
return;
}
bool in(int x, int y) {
return dfn[y] <= dfn[x] && dfn[x] <= dfn[y] + siz[y] - 1;
}
void build() {
dfn.assign(n, -1);
parent.assign(n, -1);
senior.assign(n, -1);
siz.assign(n, 0);
top.assign(n, -1);
doc = 0;
dfs(0);
dfs(0, 0);
return;
}
};
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout.tie(nullptr);
int n, m;
std::cin >> n >> m;
tree g(n);
for (int i = 1; i < n; ++i) {
int x;
std::cin >> x;
--x;
g.add_edge(x, i);
}
g.build();
std::vector<std::pair<std::vector<int>, std::vector<int>>> s(n);
std::vector<std::pair<int, int>> c(m);
for (int i = 0; i < m; ++i)
std::cin >> c[i].first >> c[i].second, --c[i].first, --c[i].second, s[c[i].first].first.push_back(i), s[c[i].second].second.push_back(i);
std::vector<int> pa(m);
std::iota(pa.begin(), pa.end(), 0);
std::function<int(int)> find_set = [&](int x) -> int {
if (x == pa[x])
return x;
return pa[x] = find_set(pa[x]);
};
static constexpr std::pair<int, int> _(std::numeric_limits<int>::max(), -1);
typedef std::remove_const_t<decltype(_)> __t;
static constexpr std::pair<__t, __t> __(_, _);
typedef std::remove_const_t<decltype(__)> ___t;
auto take = [](const ___t &x, const ___t &y) -> ___t {
return {std::min(x.first, y.first), x.first.second == y.first.second ? std::min(x.second, y.second) : (x.first == std::min(x.first, y.first) ? std::min(x.second, y.first) : std::min(x.first, y.second))};
};
auto add = [](const __t &x, int y) -> __t {
return {x.first == std::numeric_limits<int>::max() ? x.first : x.first + y, x.second};
};
auto choose = [](const ___t &x, int y) -> __t {
return x.first.second == y ? x.second : x.first;
};
long long ans = 0;
while (std::adjacent_find(pa.begin(), pa.end(), [&](int x, int y) -> bool { return find_set(x) != find_set(y); }) != pa.end()) {
std::vector<__t> d(m, _);
___t p(__);
for (int i = 0; i < m; ++i)
p = take(p, {{g.siz[c[i].first] + g.siz[c[i].second], find_set(i)}, _});
for (int i = 0; i < m; ++i)
d[find_set(i)] = std::min(d[find_set(i)], add(choose(p, find_set(i)), g.siz[c[i].first] + g.siz[c[i].second]));
std::vector<std::pair<___t, ___t>> f(n, {__, __});
for (int i : g.seq) {
for (int j : s[i].first)
f[i].first = take(f[i].first, {{g.siz[c[j].second] - g.siz[c[j].first], find_set(j)}, _});
for (int j : s[i].second)
f[i].second = take(f[i].second, {{g.siz[c[j].first] - g.siz[c[j].second], find_set(j)}, _});
for (int j : g.children[i])
f[i].first = take(f[i].first, f[j].first), f[i].second = take(f[i].second, f[j].second);
for (int j : s[i].first)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f[i].first, find_set(j)), g.siz[c[j].first] + g.siz[c[j].second]));
for (int j : s[i].second)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f[i].second, find_set(j)), g.siz[c[j].first] + g.siz[c[j].second]));
}
f.assign(n, {__, __});
for (int i : g.qes) {
for (int j : s[i].first)
f[i].first = take(f[i].first, {{g.siz[c[j].first] + g.siz[c[j].second], find_set(j)}, _});
for (int j : s[i].second)
f[i].second = take(f[i].second, {{g.siz[c[j].first] + g.siz[c[j].second], find_set(j)}, _});
for (int j : g.children[i])
f[j].first = take(f[j].first, f[i].first), f[j].second = take(f[j].second, f[i].second);
for (int j : s[i].first)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f[i].first, find_set(j)), g.siz[c[j].second] - g.siz[c[j].first]));
for (int j : s[i].second)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f[i].second, find_set(j)), g.siz[c[j].first] - g.siz[c[j].second]));
}
Binary_Indexed_Tree_like<___t, decltype(take)> f3(n, take, __);
std::vector<int> p3(n), l;
std::reverse_copy(g.qes.begin(), g.qes.end(), std::back_inserter(l));
for (int i : l) {
while (f3.st.size() > (~g.senior[i] ? p3[g.senior[i]] : 0))
f3.undo();
for (int j : s[i].first)
f3.add(g.dfn[c[j].second], {{-g.siz[c[j].first] - g.siz[c[j].second], find_set(j)}, _});
for (int j : g.children[i]) {
if (j != g.senior[i]) {
std::queue<int> q;
q.push(j);
while (!q.empty()) {
int x = q.front();
q.pop();
for (int y : s[x].first)
f3.add(g.dfn[c[y].second], {{-g.siz[c[y].first] - g.siz[c[y].second], find_set(y)}, _});
for (int y : g.children[x])
q.push(y);
}
}
}
p3[i] = f3.st.size();
for (int j : s[i].first)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f3.sum(g.dfn[c[j].second], g.dfn[c[j].second] + g.siz[c[j].second] - 1), find_set(j)), g.siz[c[j].first] + g.siz[c[j].second]));
}
for (int i : g.qes) {
while (f3.st.size() > (~g.parent[i] ? p3[g.parent[i]] : 0))
f3.undo();
for (int j : s[i].first)
f3.add(g.dfn[c[j].second], {{g.siz[c[j].first] - g.siz[c[j].second], find_set(j)}, _});
p3[i] = f3.st.size();
for (int j : s[i].first)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f3.sum(g.dfn[c[j].second], g.dfn[c[j].second] + g.siz[c[j].second] - 1), find_set(j)), g.siz[c[j].second] - g.siz[c[j].first]));
}
for (int i : g.qes) {
while (f3.st.size() > (~g.parent[i] ? p3[g.parent[i]] : 0))
f3.undo();
for (int j : s[i].second)
f3.add(g.dfn[c[j].first], {{g.siz[c[j].second] - g.siz[c[j].first], find_set(j)}, _});
p3[i] = f3.st.size();
for (int j : s[i].second)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(f3.sum(g.dfn[c[j].first], g.dfn[c[j].first] + g.siz[c[j].first] - 1), find_set(j)), g.siz[c[j].first] - g.siz[c[j].second]));
}
auto upward = [&](int x) -> ___t {
___t ans(__);
while (~x) {
ans = take(ans, f3.sum(g.dfn[g.top[x]], g.dfn[x]));
x = g.parent[g.top[x]];
}
return ans;
};
for (int i : g.qes) {
while (f3.st.size() > (~g.parent[i] ? p3[g.parent[i]] : 0))
f3.undo();
for (int j : s[i].first)
f3.add(g.dfn[c[j].second], {{g.siz[c[j].first] + g.siz[c[j].second], find_set(j)}, _});
p3[i] = f3.st.size();
for (int j : s[i].first)
d[find_set(j)] = std::min(d[find_set(j)], add(choose(upward(c[j].second), find_set(j)), -g.siz[c[j].first] - g.siz[c[j].second]));
}
std::vector<std::tuple<int, int, int>> e;
for (int i = 0; i < m; ++i)
if (i == find_set(i) && d[i].first < std::numeric_limits<int>::max())
e.emplace_back(i, d[i].second, d[i].first);
std::sort(e.begin(), e.end(), [](const std::tuple<int, int, int> &x, const std::tuple<int, int, int> &y) -> bool { return std::get<2>(x) < std::get<2>(y); });
for (auto [u, v, w] : e)
if (find_set(u) != find_set(v))
pa[find_set(u)] = find_set(v), ans += w;
}
std::cout << ans << '\n';
return 0;
}
详细
Subtask #1:
score: 10
Accepted
Test #1:
score: 10
Accepted
time: 11ms
memory: 4352kb
Test #2:
score: 10
Accepted
time: 9ms
memory: 4352kb
Test #3:
score: 10
Accepted
time: 9ms
memory: 4224kb
Test #4:
score: 10
Accepted
time: 9ms
memory: 4352kb
Test #5:
score: 10
Accepted
time: 10ms
memory: 4352kb
Subtask #2:
score: 10
Accepted
Dependency #1:
100%
Accepted
Test #6:
score: 10
Accepted
time: 4088ms
memory: 206596kb
Test #7:
score: 10
Accepted
time: 2592ms
memory: 204392kb
Test #8:
score: 10
Accepted
time: 1759ms
memory: 198468kb
Test #9:
score: 10
Accepted
time: 1567ms
memory: 205880kb
Test #10:
score: 10
Accepted
time: 2342ms
memory: 202116kb
Subtask #3:
score: 10
Accepted
Dependency #2:
100%
Accepted
Test #11:
score: 10
Accepted
time: 6780ms
memory: 227808kb
Test #12:
score: 10
Accepted
time: 5114ms
memory: 225732kb
Test #13:
score: 10
Accepted
time: 3212ms
memory: 219932kb
Test #14:
score: 10
Accepted
time: 3102ms
memory: 224932kb
Test #15:
score: 10
Accepted
time: 4373ms
memory: 223488kb
Subtask #4:
score: 20
Accepted
Test #16:
score: 20
Accepted
time: 1779ms
memory: 36040kb
Test #17:
score: 20
Accepted
time: 1836ms
memory: 37504kb
Test #18:
score: 20
Accepted
time: 1180ms
memory: 36272kb
Test #19:
score: 20
Accepted
time: 1262ms
memory: 36252kb
Test #20:
score: 20
Accepted
time: 1456ms
memory: 37120kb
Subtask #5:
score: 0
Time Limit Exceeded
Test #21:
score: 0
Time Limit Exceeded
Subtask #6:
score: 10
Accepted
Test #26:
score: 10
Accepted
time: 3183ms
memory: 246712kb
Test #27:
score: 10
Accepted
time: 3042ms
memory: 246592kb
Test #28:
score: 10
Accepted
time: 2794ms
memory: 246680kb
Test #29:
score: 10
Accepted
time: 3360ms
memory: 246628kb
Test #30:
score: 10
Accepted
time: 3242ms
memory: 246576kb
Subtask #7:
score: 0
Skipped
Dependency #1:
100%
Accepted
Dependency #2:
100%
Accepted
Dependency #3:
100%
Accepted
Dependency #4:
100%
Accepted
Dependency #5:
0%