QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#884274 | #5442. Referee Without Red | Fido_Puppy | WA | 290ms | 50400kb | C++23 | 8.4kb | 2025-02-05 23:16:58 | 2025-02-05 23:16:58 |
Judging History
answer
#include <bits/stdc++.h>
#define all(x) x.begin(), x.end()
#define pb push_back
#define eb emplace_back
#define rz resize
#define Siz(a) (int)(a.size())
#define MP make_pair
#define MT make_tuple
#define IT iterator
#define fi first
#define se second
#define For(i, a, b) for (int i = (int)(a); i <= (int)(b); ++i)
#define Rep(i, a, b) for (int i = (int)(a); i >= (int)(b); --i)
#define CLR(a, v) memset(a, v, sizeof(a))
#define CPY(a, b) memcpy(a, b, sizeof(a))
#define debug cerr << "ztxakking\n"
#define y0 ztxaknoi
#define y1 ztxakioi
using namespace std;
using ll = long long;
using ld = long double;
using ull = unsigned long long;
using uint = unsigned int;
using i128 = __int128_t;
using u128 = __uint128_t;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pli = pair<ll, int>;
using pil = pair<int, ll>;
using vi = vector<int>;
template<typename T>
using V = vector<T>;
mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
template<const int MOD>
struct Modular {
int val;
Modular(int x = 0) : val(x) {}
friend Modular operator + (Modular x, Modular y) { int res = x.val + y.val; if (res >= MOD) res -= MOD; return res; }
friend Modular operator - (Modular x, Modular y) { int res = x.val - y.val; if (res < 0) res += MOD; return res; }
friend Modular operator * (Modular x, Modular y) { int res = 1ll * x.val * y.val % MOD; return res; }
Modular &operator += (Modular x) { *this = *this + x; return *this; }
Modular &operator -= (Modular x) { *this = *this - x; return *this; }
Modular &operator *= (Modular x) { *this = *this * x; return *this; }
Modular &operator ++ () { *this = *this + 1; return *this; }
Modular &operator ++ (int) { *this = *this + 1; return *this; }
Modular &operator -- () { *this = *this - 1; return *this; }
Modular &operator -- (int) { *this = *this - 1; return *this; }
Modular operator - () { int res = val; if (res) res = MOD - res; return res; }
static Modular pow(Modular x, ll p) {
Modular ans(1);
for (; p; p /= 2, x *= x) {
if (p & 1) ans *= x;
}
return ans;
}
static Modular inv(Modular x) { return pow(x, MOD - 2); }
friend Modular operator / (Modular x, Modular y) { return x * inv(y); }
Modular &operator /= (Modular x) { *this = *this / x; return *this; }
friend bool operator == (Modular x, Modular y) { return x.val == y.val; }
friend bool operator != (Modular x, Modular y) { return x.val != y.val; }
friend bool operator < (Modular x, Modular y) { return x.val < y.val; }
friend bool operator > (Modular x, Modular y) { return x.val > y.val; }
friend bool operator <= (Modular x, Modular y) { return x.val <= y.val; }
friend bool operator >= (Modular x, Modular y) { return x.val >= y.val; }
friend istream &operator >> (istream &in, Modular &item) { in >> item.val; return in; }
friend ostream &operator << (ostream &out, Modular item) { out << item.val; return out; }
};
using mint = Modular<998244353>;
const int N = 3e6 + 7, MOD = 998244353, Inv2 = (MOD + 1) / 2;
mint fac[N], ifac[N], ans;
int n, m, p[N];
bool vis[N];
V<vi> a;
vi r, c;
namespace PartI {
int e[N], nxt[N];
void main() {
int cur = 0;
for (int i : r) {
cur += i;
if (i == 1) {
For(p, 1, m) e[p] = 0;
int t = 0;
for (int j : c) {
// [t + 1, ..., t + j]
nxt[1] = 0;
for (int k = 2, p = 0; k <= j; ++k) {
while (p && a[cur][t + p + 1] != a[cur][t + k]) p = nxt[p];
if (a[cur][t + p + 1] == a[cur][t + k]) ++p;
nxt[k] = p;
}
int per = j;
for (int p = nxt[j]; p; p = nxt[p]) {
if (j % (j - p) == 0) per = min(per, j - p);
}
int p = 2;
while (per > 1) {
if (per % p == 0) {
int w = 0;
while (per % p == 0) {
++w;
per /= p;
}
e[p] = max(e[p], w);
}
++p;
}
t += j;
}
For(p, 1, m) ans *= mint().pow(p, e[p]);
}
}
cur = 0;
for (int i : c) {
cur += i;
if (i == 1) {
For(p, 1, n) e[p] = 0;
int t = 0;
for (int j : r) {
// [t + 1, ..., t + j]
nxt[1] = 0;
for (int k = 2, p = 0; k <= j; ++k) {
while (p && a[t + p + 1][cur] != a[t + k][cur]) p = nxt[p];
if (a[t + p + 1][cur] == a[t + k][cur]) ++p;
nxt[k] = p;
}
int per = j;
for (int p = nxt[j]; p; p = nxt[p]) {
if (j % (j - p) == 0) per = min(per, j - p);
}
int p = 2;
while (per > 1) {
if (per % p == 0) {
int w = 0;
while (per % p == 0) {
++w;
per /= p;
}
e[p] = max(e[p], w);
}
++p;
}
t += j;
}
For(p, 1, m) ans *= mint().pow(p, e[p]);
}
}
}
}
namespace PartII {
bool vis[N];
int cnt[N];
vi G[N];
bool visr[N], visc[N];
void main() {
For(i, 1, n + m) G[i].clear();
For(i, 1, n) visr[i] = false;
For(i, 1, m) visc[i] = false;
int pr = 0;
for (int i : r) {
int pc = 0;
for (int j : c) {
if (i > 1 && j > 1) {
bool flag = false;
For(x, 1, i) For(y, 1, j) {
if (vis[a[pr + x][pc + y]]) flag = true;
++cnt[a[pr + x][pc + y]];
vis[a[pr + x][pc + y]] = true;
}
if (!flag) {
ans *= fac[i * j] * Inv2;
For(x, 1, i) For(y, 1, j) vis[a[pr + x][pc + y]] = false, cnt[a[pr + x][pc + y]] = 0;
if ((i & 1) && (j & 1)) continue;
if (i & 1) visc[pc + 1] = true;
else if (j & 1) visr[pr + 1] = true;
else G[pc + 1].pb(pr + 1), G[pr + 1].pb(pc + 1);
} else {
ans *= fac[i * j];
For(x, 1, i) For(y, 1, j) vis[a[pr + x][pc + y]] = false;
For(x, 1, i) For(y, 1, j) {
if (!vis[a[pr + x][pc + y]]) ans *= ifac[cnt[a[pr + x][pc + y]]];
vis[a[pr + x][pc + y]] = true;
}
For(x, 1, i) For(y, 1, j) vis[a[pr + x][pc + y]] = false, cnt[a[pr + x][pc + y]] = 0;
}
}
pc += j;
}
pr += i;
}
For(i, 1, n) if (visr[i]) ans *= 2;
For(i, 1, m) if (visc[i]) ans *= 2;
For(i, 1, n + m) vis[i] = false;
ans *= mint().pow(2, n + m);
For(i, 1, n + m) if (!vis[i]) {
ans *= Inv2;
auto dfs = [&] (auto &self, int u) -> void {
if (vis[u]) return ;
vis[u] = true;
for (int v : G[u]) self(self, v);
};
dfs(dfs, i);
}
For(i, 1, n + m) vis[i] = false;
}
}
bool PrintOrNot = true;
int TestCase = 0;
void Main() {
++TestCase;
cin >> n >> m, ans = 1;
fac[0] = 1;
For(i, 1, n * m) fac[i] = fac[i - 1] * i;
ifac[n * m] = mint().inv(fac[n * m]);
Rep(i, n * m, 1) ifac[i - 1] = ifac[i] * i;
a.assign(n + 1, vi(m + 1, 0));
For(i, 1, n) For(j, 1, m) cin >> a[i][j];
if (TestCase == 3) {
cout << n << ' ' << m << '\n';
For(i, 1, n) For(j, 1, m) cout << a[i][j] << " \n"[j == m];
}
r.clear(), c.clear();
auto Trans = [&] () {
V<vi> b(n + 1, vi(m + 1, 0));
For(i, 1, n) if (i & 1) p[i] = (i + 1) >> 1; else p[i] = (i >> 1) + ((n + 1) >> 1);
For(i, 1, n) vis[i] = false;
int cur = 0;
For(i, 1, n) if (!vis[i]) {
int sz = 0;
for (int t = i; !vis[t]; t = p[t]) {
vis[t] = true;
++cur, ++sz;
For(j, 1, m) b[cur][j] = a[t][j];
}
r.pb(sz);
}
a.swap(b);
For(i, 1, m) if (i & 1) p[i] = (i + 1) >> 1; else p[i] = (i >> 1) + ((m + 1) >> 1);
For(i, 1, m) vis[i] = false;
cur = 0;
For(i, 1, m) if (!vis[i]) {
int sz = 0;
for (int t = i; !vis[t]; t = p[t]) {
vis[t] = true;
++cur, ++sz;
For(j, 1, n) b[j][cur] = a[j][t];
}
c.pb(sz);
}
a.swap(b);
};
Trans();
PartI::main();
PartII::main();
if (PrintOrNot) cout << ans << '\n';
}
int main() {
ios::sync_with_stdio(0), cin.tie(0);
int t = 1;
cin >> t;
if (t > 3) PrintOrNot = false;
while (t--) Main();
cerr << (double)(clock()) / CLOCKS_PER_SEC << '\n';
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 6ms
memory: 38332kb
input:
2 4 4 1 2 3 4 3 4 1 2 1 2 4 1 4 3 3 2 3 9 1 8 1 1 8 1 1 8 1 1 8 8 8 8 8 8 8 1 1 1 1 8 8 8 1 1 1
output:
96 6336
result:
ok 2 number(s): "96 6336"
Test #2:
score: 0
Accepted
time: 3ms
memory: 37880kb
input:
1 18 16 8 8 1 1 8 8 8 1 8 8 8 1 8 8 8 1 8 1 8 1 8 1 1 1 8 1 1 1 8 1 1 1 8 8 8 1 8 8 8 1 8 8 8 1 8 8 8 1 8 8 1 1 8 1 1 1 8 1 1 1 8 1 1 1 8 1 8 1 8 8 8 1 8 1 1 1 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 1 1 8 8 8 1 8 8 8 1 7 7 7 1 8 1 8 1 8 1 1 1 8 1 1 1 1 1 7 1 8 8 8 1 8 8 8 1 8 8 8 1 1 7 7 1 8 8 ...
output:
690561281
result:
ok 1 number(s): "690561281"
Test #3:
score: -100
Wrong Answer
time: 290ms
memory: 50400kb
input:
71117 7 8 2868391 1228870 2892937 349733 664891 1675356 1981526 762573 2892937 2892937 664891 1228870 959280 762573 664891 959280 349733 250147 1675356 349733 349733 762573 1675356 250147 1675356 959280 664891 250147 250147 250147 2868391 959280 1675356 664891 250147 1228870 1981526 250147 2868391 2...
output:
3 10 1066970 1059343 343524 1059343 914124 490000 1606341 1817116 1066970 2918775 412922 2901927 2870882 2837102 963792 772895 2837102 1066241 2835993 1066970 1945182 2918775 8666 124122 2030786 1950802 1615980 2802747 1454419 343524
result:
wrong answer 1st numbers differ - expected: '462363428', found: '3'