QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#884143 | #9869. Horizon Scanning | galiyuu# | WA | 1ms | 3968kb | C++20 | 5.2kb | 2025-02-05 21:34:17 | 2025-02-05 21:34:25 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;++i)
#define per(i,a,n) for(int i=n-1;i>=a;--i)
#define pb push_back
#define mp make_pair
#define eb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define endl '\n'
#define SZ(x) ((ll)(x).size())
typedef vector<int> vi;
typedef vector<long long> vl;
typedef long long ll;
typedef pair<int,int> pii;
typedef long double db;
mt19937 mrand(random_device{}());
int rnd(int x){return mrand()%x;}
const ll mod=998244353;
long double PI=acos(-1.0); // 180
using T=long double; // 还是不要乱动免得精度爆炸
constexpr T EPS=1e-10;
constexpr T INF=1e20;
inline int sign(T a) { return a < -EPS ? -1 : a > EPS; }
inline int cmp(T a, T b) { return sign(a-b); }
inline T pow2(T x) { return x*x; }
struct P {
T x, y;
P(T _x=0, T _y=0) : x(_x), y(_y) {}
P operator+() { return *this; }
P operator-() { return P(-x,-y); }
P operator+(P p) { return P(x + p.x, y + p.y); }
P operator-(P p) { return P(x - p.x, y - p.y); }
P operator*(T k) { return P(x * k, y * k); }
P operator/(T k) { return P(x / k, y / k); }
bool operator<(P p) const {
int c = cmp(x, p.x);
if (c) return c == -1;
return cmp(y, p.y) == -1;
}
// (a == b and b == c) != (a == c)
bool operator==(P &p) { return cmp(p.x,x) == 0 and cmp(p.y,y) == 0; }
T dot(P p) { return x * p.x + y * p.y; }
T det(P p) { return x * p.y - y * p.x; } // an = this->p
T abs2() { return x * x + y * y; }
T abs() { return sqrt(abs2()); }
T distTo(P p) { return (*this - p).abs(); } // distanct(this,p)
P rot90() { return P(-y,x); } // 逆时针
P unit() { return *this/abs(); }
P rot(T an){ return {x*cos(an)-y*sin(an),x*sin(an)+y*cos(an)}; } // 顺时针
// quad [0,pi)-1, [pi,2pi)-0.
// 判断是在 x 轴上半段还是下半段
int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); }
T alpha() { return atan2(y, x); } // atan2l-(long double)
T angle(P p) { return acos(((*this).dot(p))/abs()/p.abs()); }
};
ostream &operator<<(ostream &os,const P &p) {
return os << p.x << " " << p.y;
}
istream &operator>>(istream &is,P &p) {
is >> p.x >> p.y;
return is;
}
// crossOp==0 三点共线 crossOp==1/-1 p3 在 p2 逆/顺时针
// crossOp 在 10-9 处可能会出现一定的精度问题
#define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y))
#define crossOp(p1,p2,p3) sign(cross(p1,p2,p3))
bool chkLL(P p1, P p2, P q1, P q2) { // 两条 直线 是否相交
T a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return sign(a1+a2) != 0;
}
P isLL(P p1, P p2, P q1, P q2) { // 求 直线 交点
T a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2);
return (p1 * a2 + p2 * a1) / (a1 + a2);
}
bool intersect(T l1,T r1,T l2,T r2) { // 判断 [l1,r1] 与 [l2,r2] 是否相交
if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2);
return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 );
}
bool isSS(P p1, P p2, P q1, P q2) { // 线段相交
return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) &&
crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) <= 0;
}
bool isSS_strict(P p1, P p2, P q1, P q2) { // 线段严格相交 不能交端点
return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1)
* crossOp(q1,q2,p2) < 0;
}
bool isMiddle(T a, T m, T b) {
return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m);
}
bool isMiddle(P a, P m, P b) { // 判断一个点是否在平面中间
return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y);
}
bool onSeg(P p1, P p2, P q) { // 判断 点 q 是不是在线段 p1p2 上
return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2);
}
bool onSeg_strict(P p1, P p2, P q) {
return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0;
}
P proj(P p1, P p2, P q) { // 求 q 到 直线p1p2 的投影 (垂足), p1 != p2!
P dir = p2 - p1;
return p1 + dir * (dir.dot(q - p1) / dir.abs2());
}
P reflect(P p1, P p2, P q) { // 求 q 以 直线p1p2 为轴的反射, p1 != p2!
return proj(p1,p2,q) * 2 - q;
}
T nearest(P p1,P p2,P q){ // 求 q 到 线段 p1p2 的最小距离
if (p1==p2) return p1.distTo(q);
P h = proj(p1,p2,q);
if(isMiddle(p1,h,p2))
return q.distTo(h);
return min(p1.distTo(q),p2.distTo(q));
}
T disSS(P p1, P p2, P q1, P q2) { // 求 线段 p1p2 与 线段 q1q2 的距离
if(isSS(p1,p2,q1,q2)) return 0;
return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2)));
}
signed main() {
int tc;
scanf("%d",&tc);
while (tc--) {
int n,k;
scanf("%d%d",&n,&k);
vector<db> pa(2*n);
rep(i,0,n) {
P a;
cin>>a;
pa[i]=a.alpha();
}
if (n==1) {
db ans=2*PI;
printf("%.10f\n",ans);
continue;
}
sort(pa.begin(),pa.begin()+n);
rep(i,n,2*n) pa[i]=pa[i-n]+2*PI;
db ans;
ans=pa[k]-pa[0];
rep(i,k+1,2*n) {
ans=max(ans,pa[i]-pa[i-k]);
}
printf("%.10f\n",ans);
}
}
// 8 2
// 1 0
// 1 1
// 0 1
// -1 1
// -1 0
// -1 -1
// 0 -1
// 1 -1
詳細信息
Test #1:
score: 0
Wrong Answer
time: 1ms
memory: 3968kb
input:
5 1 1 0 1 8 2 1 0 1 1 0 1 -1 1 -1 0 -1 -1 0 -1 1 -1 4 2 -1 1 0 1 0 2 1 1 4 2 -1000000000 0 -998244353 1 998244353 1 1000000000 0 3 1 0 1 0 2 0 -1
output:
0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
result:
wrong answer 1st numbers differ - expected: '6.2831853', found: '0.0000000', error = '1.0000000'