QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#883087#8593. Coinarnur29370 0ms0kbC++145.7kb2025-02-05 14:40:262025-02-05 14:40:26

Judging History

This is the latest submission verdict.

  • [2025-02-05 14:40:26]
  • Judged
  • Verdict: 0
  • Time: 0ms
  • Memory: 0kb
  • [2025-02-05 14:40:26]
  • Submitted

answer

#include <bits/stdc++.h>
// #pragma GCC optimize("Ofast,unroll-loops,no-stack-protector,fast-math,inline")
// #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,lzcnt,mmx,abm,avx,avx2,fma")
using namespace std;
#define static_assert(...);
#define speed ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0);
#define bigInt __int128
#define int long long
#define dl double long
#define fl float
#define all(s) s.begin(), s.end()
#define pub push_back
#define puf push_front
#define pob pop_back
#define pof pob_front
#define ins insert
#define F first
#define S second
#define len length
const int N = 100005;
const int M = 1005;
const int LN = 131072;
const int MOD = 1e9 + 7;//998244353;
const int BLOCK = 500;
int binpow(int a, int b) {//, int MOD) {
    int res = 1;
    a %= MOD;
    while (b > 0) {
        if (b & 1) {
            res = res * a;
            res %= MOD;
        }
        a = a * a;
        a %= MOD;
        b >>= 1;
    }
    return res;
}
int mdiv(int a, int b) {
    int ret = (a % MOD) * binpow(b, MOD - 2);
    ret %= MOD;
    return ret;
}
int mmul(int a, int b) {
    int ret = (a % MOD) * (b % MOD);
    ret %= MOD;
    return ret;
}
int madd(int a, int b) {
    int ret = (a % MOD) + (b % MOD);
    ret %= MOD;
    return ret;
}
int msub(int a, int b) {
    int ret = (a % MOD) - (b % MOD);
    ret = (ret + MOD) % MOD;
    return ret;
}
int GCD(int a, int b) {
    if (b == 0) {
        return a;
    }
    return GCD(b, a % b);
}
struct pqComp
{
    bool operator()(const pair<int, int>& p1, const pair<int, int>& p2) const
    {
        return (p1.F < p2.F) || (p1.F == p2.F && p1.S < p2.S);
    }
};
bool pCompF(pair<int, int>& p1, pair<int, int>& p2)
{
    return p1.F < p2.F;
}
bool pCompS(const pair<int, int>& p1, const pair<int, int>& p2)
{
    return p1.S < p2.S;
}
bool pCompFS(pair<int, int>& p1, pair<int, int>& p2)
{
    return (p1.S < p2.S) || (p1.S == p2.S && p1.F < p2.F);
}
vector <vector<int>> DS {{0, -1}, {0, 1}, {-1, 0}, {1, 0}};
int n, m, ln = 1, tmn[8*N], tmx[8*N], x[2*N], y[2*N], mn[2*N], mx[2*N], lf[2*N], rg[2*N], vis[2*N];
vector<int> tp, g[2*N];

void dfs(int v) {
    vis[v] = 1;
    for (int u: g[v]) {
        if (vis[u]) continue;
        dfs(u);
    }
    tp.pub(v);
}

void updmn(int pos, int x) {
    int v = pos + ln - 1;
    tmn[v] = pos;
    v /= 2;
    while (v) {
        tmn[v] = (tmn[v * 2] < tmn[v * 2 + 1] ? tmn[v * 2] : tmn[v * 2 + 1]);
        v /= 2;
    }
}

void updmx(int pos, int x) {
    int v = pos + ln - 1;
    tmx[v] = pos;
    v /= 2;
    while (v) {
        tmx[v] = (tmx[v * 2] > tmx[v * 2 + 1] ? tmx[v * 2] : tmx[v * 2 + 1]);
        v /= 2;
    }
}

int getmn(int l, int r, int v = 1, int tl = 1, int tr = ln) {
    if (r < tl || tr < l) {
        return 0;
    }
    if (l <= tl && tr <= r) {
        return tmn[v];
    }
    int m = (tl + tr) / 2;
    int xl = getmn(l, r, v * 2, tl, m), xr = getmn(l, r, v * 2 + 1, m + 1, tr);
    return (tmn[xl] < tmn[xr] ? xl : xr);
}

int getmx(int l, int r, int v = 1, int tl = 1, int tr = ln) {
    if (r < tl || tr < l) {
        return 0;
    }
    if (l <= tl && tr <= r) {
        return tmx[v];
    }
    int m = (tl + tr) / 2;
    int xl = getmx(l, r, v * 2, tl, m), xr = getmx(l, r, v * 2 + 1, m + 1, tr);
    return (tmx[xl] > tmx[xr] ? xl : xr);
}

int upd(int i) {
    int ok = 0;
    while (lf[i] >= 1 && mn[lf[i]] <= i) {
        lf[i] = lf[lf[i]];
        ok = 1;
    }
    while (rg[i] <= n && mx[rg[i]] >= i) {
        rg[i] = rg[rg[i]];
        ok = 1;
    }
    return ok;
}

void solve() {
    cin >> n >> m;
    while (ln < n) {
        ln *= 2;
    }
    for (int i = 0; i < ln * 2; ++i) {
        tmn[i] = 1e9;
        tmx[i] = 0;
    }
    for (int i = 1; i <= m; ++i) {
        cin >> x[i] >> y[i];
        g[x[i]].pub(y[i]);
    }
    for (int i = 1; i <= n; ++i) {
        if (!vis[i]) {
            dfs(i);
        }
    }
    tp.pub(0);
    reverse(all(tp));
    for (int i = 1; i <= n; ++i) {
        cout << tp[i] << ' ';
    }
    cout << '\n';
    vector<int> pos(n + 1);
    for (int i = 1; i <= n; ++i) {
        pos[tp[i]] = i;
        mn[i] = 1e9;
        lf[i] = i - 1;
        rg[i] = i + 1;
        updmn(i, lf[i]);
        updmx(i, rg[i]);
    }
    vector<int> ans(n + 1, -1);
    for (int i = 1; i <= m; ++i) {
        mx[pos[y[i]]] = max(mx[pos[y[i]]], pos[x[i]]);
        mn[pos[x[i]]] = min(mn[pos[x[i]]], pos[y[i]]);
        vector<array<int, 3>> add;
        while (true) {
            int j = getmn(pos[y[i]], n);
            //cout << "! " << j << ' ' << lf[j] << ' ' << rg[j] << '\n';
            if (lf[j] == 0 || lf[j] >= pos[y[i]]) break;
            add.pub({0, j, lf[j]});
            updmn(j, 1e9);
        }
        while (true) {
            int j = getmx(1, pos[x[i]]);
            if (rg[j] == n + 1 || rg[j] <= pos[x[i]]) break;
            add.pub({1, j, rg[j]});
            updmx(j, 0);
        }
        for (auto [t, x, y]: add) {
            if (t) {
                updmn(x, y);
            }
            else {
                updmx(x, y);
            }
            if (lf[x] == 0 && rg[x] == n + 1) {
                ans[tp[x]] = i;
            }
        }
    }
    for (int i = 1; i <= n; ++i) {
        cout << ans[i] << ' ';
    }
}

signed main() {
    speed;
    int T = 1;
    //cin >> T;
    while (T--) {
        solve();
    }
}
/*
НЕ ЗАХОДИТ РЕШЕНИЕ?
1) ПРОВЕРЬ НА ОЧЕВИДНЫЕ ОШИБКИ В КОДЕ
2) ПРОВЕРЬ НА ПЕРЕПОЛНЕНИЯ
3) УБЕДИСЬ В ПРАВИЛЬНОСТИ АЛГОРИТМА
*/

Details

Tip: Click on the bar to expand more detailed information

Subtask #1:

score: 0
Time Limit Exceeded

Test #1:

score: 0
Time Limit Exceeded

input:

4 4
2 4
3 1
4 1
2 3

output:


result:


Subtask #2:

score: 0
Skipped

Dependency #1:

0%

Subtask #3:

score: 0
Skipped

Dependency #1:

0%

Subtask #4:

score: 0
Skipped

Dependency #1:

0%