QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#879663 | #7634. Cards | sansen | AC ✓ | 354ms | 14500kb | Rust | 22.7kb | 2025-02-02 10:14:34 | 2025-02-02 10:14:34 |
Judging History
answer
use std::io::Write;
fn main() {
input! {
n: usize,
m: usize,
p: [M; 5],
}
let a = (0..=m).map(|i| 2 * i).collect::<Vec<_>>();
let b = vec![std::usize::MAX / 2; m + 1];
let mut f = vec![M::zero(); n + 1];
f[n] = M::one();
let mut p = p;
let s = p.iter().fold(M::zero(), |s, a| s + *a);
for p in p.iter_mut() {
*p *= s.inv();
}
let ans = calc(&a, &b, &f, &p);
println!("{}", ans.iter().fold(M::zero(), |s, a| s + *a));
}
type M = ModInt<998244353>;
// a_i <= x_i <= b_i
fn calc(a: &[usize], b: &[usize], f: &[M], g: &[M]) -> Vec<M> {
if g.is_empty() {
return vec![];
}
let mut a = Vec::from(a);
let mut b = Vec::from(b);
let n = a.len();
assert!(b.len() == n);
for i in 1..n {
a[i] = a[i - 1].max(a[i]);
b[i] = b[i].min(b[i - 1] + g.len() - 1);
}
for i in (1..n).rev() {
a[i - 1] = a[i - 1].max(a[i].saturating_sub(g.len() - 1));
b[i - 1] = b[i - 1].min(b[i]);
}
if a.iter().zip(b.iter()).any(|p| *p.0 > *p.1) {
return vec![];
}
type T = (usize, Vec<M>);
let add = |a: &T, b: &T| -> T {
if a.1.is_empty() {
return b.clone();
}
if b.1.is_empty() {
return a.clone();
}
let geta = a.0.min(b.0);
let tail = (a.0 + a.1.len()).max(b.0 + b.1.len());
let mut res = vec![M::zero(); tail - geta];
res[(a.0 - geta)..].add_assign(&a.1);
res[(b.0 - geta)..].add_assign(&b.1);
(geta, res)
};
let mul = |a: &T, b: &T| -> T { (a.0 + b.0, a.1.convolution(&b.1)) };
let truncate = |a: T, l: usize, r: usize| -> T {
let (mut geta, mut po) = a;
if geta < l {
po.drain(..(l - geta));
geta = l;
}
if geta <= r {
po.truncate(r - geta + 1);
} else {
po.clear();
}
(geta, po)
};
let k = a.len().next_power_of_two().trailing_zeros() as usize;
let mut pow = vec![(0, Vec::from(g))];
for _ in 1..k {
let po = pow.last().unwrap();
let p = mul(po, po);
pow.push(p);
}
let step = recurse(|rec, (poly, s, k): (T, usize, usize)| -> T {
if poly.1.is_empty() {
return poly;
}
if k == 0 {
let res = mul(&poly, &pow[0]);
return truncate(res, a[s + 1], b[s + 1]);
}
let len = 1 << k;
let t = s + len;
let (l, r) = (a[t], b[t]);
let (l, r) = (
l.max(poly.0),
r.saturating_sub((g.len() - 1) << k)
.min(poly.0 + poly.1.len() - 1),
);
if l <= r {
let mut res = (0, vec![]);
if l > 0 {
let f = truncate(poly.clone(), 0, l - 1);
res = add(&res, &rec((rec((f, s, k - 1)), s + (1 << (k - 1)), k - 1)));
}
let f = truncate(poly.clone(), l, r);
let g = mul(&f, &pow[k]);
res = add(&res, &g);
if r < poly.0 + poly.1.len() - 1 {
let f = truncate(poly, r + 1, std::usize::MAX);
res = add(&res, &rec((rec((f, s, k - 1)), s + (1 << (k - 1)), k - 1)));
}
res
} else {
rec((rec((poly, s, k - 1)), s + (1 << (k - 1)), k - 1))
}
});
let mut pos = 0;
let mut state = (0, Vec::from(f));
state = truncate(state, a[0], b[0]);
for i in (0..k).rev() {
if pos + (1 << i) < a.len() {
state = step((state, pos, i));
pos += 1 << i;
}
}
let geta = state.0;
let mut res = state.1.clone();
res.splice(0..0, (0..geta).map(|_| M::zero()));
res
}
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
#[macro_export]
macro_rules! input {
(source = $s:expr, $($r:tt)*) => {
let mut iter = $s.split_whitespace();
input_inner!{iter, $($r)*}
};
($($r:tt)*) => {
let s = {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
s
};
let mut iter = s.split_whitespace();
input_inner!{iter, $($r)*}
};
}
#[macro_export]
macro_rules! input_inner {
($iter:expr) => {};
($iter:expr, ) => {};
($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($iter, $t);
input_inner!{$iter $($r)*}
};
}
#[macro_export]
macro_rules! read_value {
($iter:expr, ( $($t:tt),* )) => {
( $(read_value!($iter, $t)),* )
};
($iter:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
};
($iter:expr, chars) => {
read_value!($iter, String).chars().collect::<Vec<char>>()
};
($iter:expr, bytes) => {
read_value!($iter, String).bytes().collect::<Vec<u8>>()
};
($iter:expr, usize1) => {
read_value!($iter, usize) - 1
};
($iter:expr, $t:ty) => {
$iter.next().unwrap().parse::<$t>().expect("Parse error")
};
}
// ---------- end input macro ----------
// ---------- begin modint ----------
pub const fn pow_mod(mut r: u32, mut n: u32, m: u32) -> u32 {
let mut t = 1;
while n > 0 {
if n & 1 == 1 {
t = (t as u64 * r as u64 % m as u64) as u32;
}
r = (r as u64 * r as u64 % m as u64) as u32;
n >>= 1;
}
t
}
pub const fn primitive_root(p: u32) -> u32 {
let mut m = p - 1;
let mut f = [1; 30];
let mut k = 0;
let mut d = 2;
while d * d <= m {
if m % d == 0 {
f[k] = d;
k += 1;
}
while m % d == 0 {
m /= d;
}
d += 1;
}
if m > 1 {
f[k] = m;
k += 1;
}
let mut g = 1;
while g < p {
let mut ok = true;
let mut i = 0;
while i < k {
ok &= pow_mod(g, (p - 1) / f[i], p) > 1;
i += 1;
}
if ok {
break;
}
g += 1;
}
g
}
pub const fn is_prime(n: u32) -> bool {
if n <= 1 {
return false;
}
let mut d = 2;
while d * d <= n {
if n % d == 0 {
return false;
}
d += 1;
}
true
}
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct ModInt<const M: u32>(u32);
impl<const M: u32> ModInt<{ M }> {
const REM: u32 = {
let mut t = 1u32;
let mut s = !M + 1;
let mut n = !0u32 >> 2;
while n > 0 {
if n & 1 == 1 {
t = t.wrapping_mul(s);
}
s = s.wrapping_mul(s);
n >>= 1;
}
t
};
const INI: u64 = ((1u128 << 64) % M as u128) as u64;
const IS_PRIME: () = assert!(is_prime(M));
const PRIMITIVE_ROOT: u32 = primitive_root(M);
const ORDER: usize = 1 << (M - 1).trailing_zeros();
const fn reduce(x: u64) -> u32 {
let _ = Self::IS_PRIME;
let b = (x as u32 * Self::REM) as u64;
let t = x + b * M as u64;
let mut c = (t >> 32) as u32;
if c >= M {
c -= M;
}
c as u32
}
const fn multiply(a: u32, b: u32) -> u32 {
Self::reduce(a as u64 * b as u64)
}
pub const fn new(v: u32) -> Self {
assert!(v < M);
Self(Self::reduce(v as u64 * Self::INI))
}
pub const fn const_mul(&self, rhs: Self) -> Self {
Self(Self::multiply(self.0, rhs.0))
}
pub const fn pow(&self, mut n: u64) -> Self {
let mut t = Self::new(1);
let mut r = *self;
while n > 0 {
if n & 1 == 1 {
t = t.const_mul(r);
}
r = r.const_mul(r);
n >>= 1;
}
t
}
pub const fn inv(&self) -> Self {
assert!(self.0 != 0);
self.pow(M as u64 - 2)
}
pub const fn get(&self) -> u32 {
Self::reduce(self.0 as u64)
}
pub const fn zero() -> Self {
Self::new(0)
}
pub const fn one() -> Self {
Self::new(1)
}
}
impl<const M: u32> Add for ModInt<{ M }> {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= M {
v -= M;
}
Self(v)
}
}
impl<const M: u32> Sub for ModInt<{ M }> {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += M;
}
Self(v)
}
}
impl<const M: u32> Mul for ModInt<{ M }> {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
self.const_mul(rhs)
}
}
impl<const M: u32> Div for ModInt<{ M }> {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
self * rhs.inv()
}
}
impl<const M: u32> AddAssign for ModInt<{ M }> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<const M: u32> SubAssign for ModInt<{ M }> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<const M: u32> MulAssign for ModInt<{ M }> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<const M: u32> DivAssign for ModInt<{ M }> {
fn div_assign(&mut self, rhs: Self) {
*self = *self / rhs;
}
}
impl<const M: u32> Neg for ModInt<{ M }> {
type Output = Self;
fn neg(self) -> Self::Output {
if self.0 == 0 {
self
} else {
Self(M - self.0)
}
}
}
impl<const M: u32> std::fmt::Display for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::fmt::Debug for ModInt<{ M }> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.get())
}
}
impl<const M: u32> std::str::FromStr for ModInt<{ M }> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<const M: u32> From<usize> for ModInt<{ M }> {
fn from(val: usize) -> ModInt<{ M }> {
ModInt::new((val % M as usize) as u32)
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<const MOD: u32> {
fact: Vec<ModInt<MOD>>,
ifact: Vec<ModInt<MOD>>,
inv: Vec<ModInt<MOD>>,
}
impl<const MOD: u32> Precalc<MOD> {
pub fn new(size: usize) -> Self {
let mut fact = vec![ModInt::one(); size + 1];
let mut ifact = vec![ModInt::one(); size + 1];
let mut inv = vec![ModInt::one(); size + 1];
for i in 2..=size {
fact[i] = fact[i - 1] * ModInt::from(i);
}
ifact[size] = fact[size].inv();
for i in (2..=size).rev() {
inv[i] = ifact[i] * fact[i - 1];
ifact[i - 1] = ifact[i] * ModInt::from(i);
}
Self { fact, ifact, inv }
}
pub fn fact(&self, n: usize) -> ModInt<MOD> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<MOD> {
self.ifact[n]
}
pub fn inv(&self, n: usize) -> ModInt<MOD> {
assert!(0 < n);
self.inv[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<MOD> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<MOD> {
if n < k {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
impl<const M: u32> Zero for ModInt<{ M }> {
fn zero() -> Self {
Self::zero()
}
fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<const M: u32> One for ModInt<{ M }> {
fn one() -> Self {
Self::one()
}
fn is_one(&self) -> bool {
self.get() == 1
}
}
// ---------- begin array op ----------
struct NTTPrecalc<const M: u32> {
sum_e: [ModInt<{ M }>; 30],
sum_ie: [ModInt<{ M }>; 30],
}
impl<const M: u32> NTTPrecalc<{ M }> {
const fn new() -> Self {
let cnt2 = (M - 1).trailing_zeros() as usize;
let root = ModInt::new(ModInt::<{ M }>::PRIMITIVE_ROOT);
let zeta = root.pow((M - 1) as u64 >> cnt2);
let mut es = [ModInt::zero(); 30];
let mut ies = [ModInt::zero(); 30];
let mut sum_e = [ModInt::zero(); 30];
let mut sum_ie = [ModInt::zero(); 30];
let mut e = zeta;
let mut ie = e.inv();
let mut i = cnt2;
while i >= 2 {
es[i - 2] = e;
ies[i - 2] = ie;
e = e.const_mul(e);
ie = ie.const_mul(ie);
i -= 1;
}
let mut now = ModInt::one();
let mut inow = ModInt::one();
let mut i = 0;
while i < cnt2 - 1 {
sum_e[i] = es[i].const_mul(now);
sum_ie[i] = ies[i].const_mul(inow);
now = ies[i].const_mul(now);
inow = es[i].const_mul(inow);
i += 1;
}
Self { sum_e, sum_ie }
}
}
struct NTTPrecalcHelper<const MOD: u32>;
impl<const MOD: u32> NTTPrecalcHelper<MOD> {
const A: NTTPrecalc<MOD> = NTTPrecalc::new();
}
pub trait ArrayAdd {
type Item;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayAdd for [T]
where
T: Zero + Copy,
{
type Item = T;
fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.add_assign(rhs);
c
}
}
pub trait ArrayAddAssign {
type Item;
fn add_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayAddAssign for [T]
where
T: Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
}
}
impl<T> ArrayAddAssign for Vec<T>
where
T: Zero + Add<Output = T> + Copy,
{
type Item = T;
fn add_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().add_assign(rhs);
}
}
pub trait ArraySub {
type Item;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArraySub for [T]
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
let mut c = vec![T::zero(); self.len().max(rhs.len())];
c[..self.len()].copy_from_slice(self);
c.sub_assign(rhs);
c
}
}
pub trait ArraySubAssign {
type Item;
fn sub_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArraySubAssign for [T]
where
T: Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() >= rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
}
}
impl<T> ArraySubAssign for Vec<T>
where
T: Zero + Sub<Output = T> + Copy,
{
type Item = T;
fn sub_assign(&mut self, rhs: &[Self::Item]) {
if self.len() < rhs.len() {
self.resize(rhs.len(), T::zero());
}
self.as_mut_slice().sub_assign(rhs);
}
}
pub trait ArrayDot {
type Item;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayDot for [T]
where
T: Mul<Output = T> + Copy,
{
type Item = T;
fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
assert!(self.len() == rhs.len());
self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
}
}
pub trait ArrayDotAssign {
type Item;
fn dot_assign(&mut self, rhs: &[Self::Item]);
}
impl<T> ArrayDotAssign for [T]
where
T: MulAssign + Copy,
{
type Item = T;
fn dot_assign(&mut self, rhs: &[Self::Item]) {
assert!(self.len() == rhs.len());
self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
}
}
pub trait ArrayMul {
type Item;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<T> ArrayMul for [T]
where
T: Zero + One + Copy,
{
type Item = T;
fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.is_empty() || rhs.is_empty() {
return vec![];
}
let mut res = vec![T::zero(); self.len() + rhs.len() - 1];
for (i, a) in self.iter().enumerate() {
for (res, b) in res[i..].iter_mut().zip(rhs.iter()) {
*res = *res + *a * *b;
}
}
res
}
}
// transform でlen=1を指定すればNTTになる
pub trait ArrayConvolution {
type Item;
fn transform(&mut self, len: usize);
fn inverse_transform(&mut self, len: usize);
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}
impl<const M: u32> ArrayConvolution for [ModInt<{ M }>] {
type Item = ModInt<{ M }>;
fn transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in 1..=k {
let p = len << (k - ph);
let mut now = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y * now;
*x = l + r;
*y = l - r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
}
}
fn inverse_transform(&mut self, len: usize) {
let f = self;
let n = f.len();
let k = (n / len).trailing_zeros() as usize;
assert!(len << k == n);
assert!(k <= ModInt::<{ M }>::ORDER);
let pre = &NTTPrecalcHelper::<{ M }>::A;
for ph in (1..=k).rev() {
let p = len << (k - ph);
let mut inow = ModInt::one();
for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
let (x, y) = f.split_at_mut(p);
for (x, y) in x.iter_mut().zip(y.iter_mut()) {
let l = *x;
let r = *y;
*x = l + r;
*y = (l - r) * inow;
}
inow *= pre.sum_ie[(!i).trailing_zeros() as usize];
}
}
let ik = ModInt::new(2).inv().pow(k as u64);
for f in f.iter_mut() {
*f *= ik;
}
}
fn convolution(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
if self.len().min(rhs.len()) <= 32 {
return self.mul(rhs);
}
const PARAM: usize = 10;
let size = self.len() + rhs.len() - 1;
let mut k = 0;
while (size + (1 << k) - 1) >> k > PARAM {
k += 1;
}
let len = (size + (1 << k) - 1) >> k;
let mut f = vec![ModInt::zero(); len << k];
let mut g = vec![ModInt::zero(); len << k];
f[..self.len()].copy_from_slice(self);
g[..rhs.len()].copy_from_slice(rhs);
f.transform(len);
g.transform(len);
let mut buf = [ModInt::zero(); 2 * PARAM - 1];
let buf = &mut buf[..(2 * len - 1)];
let pre = &NTTPrecalcHelper::<{ M }>::A;
let mut now = ModInt::one();
for (i, (f, g)) in f
.chunks_exact_mut(2 * len)
.zip(g.chunks_exact(2 * len))
.enumerate()
{
let mut r = now;
for (f, g) in f.chunks_exact_mut(len).zip(g.chunks_exact(len)) {
buf.fill(ModInt::zero());
for (i, f) in f.iter().enumerate() {
for (buf, g) in buf[i..].iter_mut().zip(g.iter()) {
*buf = *buf + *f * *g;
}
}
f.copy_from_slice(&buf[..len]);
for (f, buf) in f.iter_mut().zip(buf[len..].iter()) {
*f = *f + r * *buf;
}
r = -r;
}
now *= pre.sum_e[(!i).trailing_zeros() as usize];
}
f.inverse_transform(len);
f.truncate(self.len() + rhs.len() - 1);
f
}
}
// ---------- end array op ----------
// ---------- begin trait ----------
use std::ops::*;
pub trait Zero: Sized + Add<Self, Output = Self> {
fn zero() -> Self;
fn is_zero(&self) -> bool;
}
pub trait One: Sized + Mul<Self, Output = Self> {
fn one() -> Self;
fn is_one(&self) -> bool;
}
pub trait Group: Zero + Sub<Output = Self> + Neg<Output = Self> {}
pub trait SemiRing: Zero + One {}
pub trait Ring: SemiRing + Group {}
pub trait Field: Ring + Div<Output = Self> {}
impl<T> Group for T where T: Zero + Sub<Output = Self> + Neg<Output = Self> {}
impl<T> SemiRing for T where T: Zero + One {}
impl<T> Ring for T where T: SemiRing + Group {}
impl<T> Field for T where T: Ring + Div<Output = Self> {}
pub fn zero<T: Zero>() -> T {
T::zero()
}
pub fn one<T: One>() -> T {
T::one()
}
pub fn pow<T: One + Clone>(mut r: T, mut n: usize) -> T {
let mut t = one();
while n > 0 {
if n & 1 == 1 {
t = t * r.clone();
}
r = r.clone() * r;
n >>= 1;
}
t
}
pub fn pow_sum<T: SemiRing + Clone>(r: T, n: usize) -> T {
if n == 0 {
T::zero()
} else if n & 1 == 1 {
T::one() + r.clone() * pow_sum(r, n - 1)
} else {
let a = T::one() + r.clone();
let b = r.clone() * r;
a * pow_sum(b, n / 2)
}
}
// ---------- end trait ----------
// ---------- begin recurse ----------
// reference
// https://twitter.com/noshi91/status/1393952665566994434
// https://twitter.com/shino16_cp/status/1393933468082397190
pub fn recurse<A, R, F>(f: F) -> impl Fn(A) -> R
where
F: Fn(&dyn Fn(A) -> R, A) -> R,
{
fn call<A, R, F>(f: &F, a: A) -> R
where
F: Fn(&dyn Fn(A) -> R, A) -> R,
{
f(&|a| call(f, a), a)
}
move |a| call(&f, a)
}
// ---------- end recurse ----------
这程序好像有点Bug,我给组数据试试?
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2304kb
input:
1 1 1 1 1 1 1
output:
399297742
result:
ok 1 number(s): "399297742"
Test #2:
score: 0
Accepted
time: 332ms
memory: 14428kb
input:
100000 100000 1234 4567 7890 4321 54321
output:
348074135
result:
ok 1 number(s): "348074135"
Test #3:
score: 0
Accepted
time: 333ms
memory: 14488kb
input:
100000 100000 1 2 3 4 5
output:
639188342
result:
ok 1 number(s): "639188342"
Test #4:
score: 0
Accepted
time: 332ms
memory: 14428kb
input:
100000 100000 5 4 3 2 1
output:
211669278
result:
ok 1 number(s): "211669278"
Test #5:
score: 0
Accepted
time: 0ms
memory: 2176kb
input:
0 0 1 1 1 1 1
output:
1
result:
ok 1 number(s): "1"
Test #6:
score: 0
Accepted
time: 127ms
memory: 6680kb
input:
1 50000 1 1 1 1 1
output:
548880636
result:
ok 1 number(s): "548880636"
Test #7:
score: 0
Accepted
time: 0ms
memory: 2816kb
input:
50000 1 1 1 1 1 1
output:
1
result:
ok 1 number(s): "1"
Test #8:
score: 0
Accepted
time: 325ms
memory: 14372kb
input:
100000 100000 234 666 7655 12234 0
output:
45268602
result:
ok 1 number(s): "45268602"
Test #9:
score: 0
Accepted
time: 354ms
memory: 14500kb
input:
99999 99999 12345 54332 12345 65432 34444
output:
360543661
result:
ok 1 number(s): "360543661"
Test #10:
score: 0
Accepted
time: 350ms
memory: 14428kb
input:
99998 99998 1 1 1 1 1
output:
602326230
result:
ok 1 number(s): "602326230"
Test #11:
score: 0
Accepted
time: 349ms
memory: 14480kb
input:
99998 99997 1 1 1 1 1
output:
159752985
result:
ok 1 number(s): "159752985"
Test #12:
score: 0
Accepted
time: 331ms
memory: 14500kb
input:
99997 100000 1 2 3 4 5
output:
139603712
result:
ok 1 number(s): "139603712"
Test #13:
score: 0
Accepted
time: 347ms
memory: 14500kb
input:
100000 99997 1 2 2 1 3232323
output:
363030953
result:
ok 1 number(s): "363030953"
Test #14:
score: 0
Accepted
time: 0ms
memory: 2176kb
input:
0 0 0 0 1 0 0
output:
1
result:
ok 1 number(s): "1"
Test #15:
score: 0
Accepted
time: 22ms
memory: 3200kb
input:
10000 10000 91095828 93770094 5303328 491263 50290308
output:
135900098
result:
ok 1 number(s): "135900098"
Test #16:
score: 0
Accepted
time: 24ms
memory: 3180kb
input:
9226 9995 62366139 253808 1929312 491263 4375669
output:
812662634
result:
ok 1 number(s): "812662634"
Test #17:
score: 0
Accepted
time: 26ms
memory: 3620kb
input:
18641 10000 1061 4359 1330 13764 16043
output:
112339046
result:
ok 1 number(s): "112339046"
Extra Test:
score: 0
Extra Test Passed