QOJ.ac

QOJ

ID题目提交者结果用时内存语言文件大小提交时间测评时间
#879333#9697. Algebraucup-team2796#WA 0ms3712kbC++2328.4kb2025-02-01 23:39:232025-02-01 23:39:23

Judging History

This is the latest submission verdict.

  • [2025-02-01 23:39:23]
  • Judged
  • Verdict: WA
  • Time: 0ms
  • Memory: 3712kb
  • [2025-02-01 23:39:23]
  • Submitted

answer

#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#define rep(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b)-1; i >= (int)(a); i--)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())
#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())

using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;

template <typename T> inline bool chmax(T &a, T b) {
    if (a < b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T> inline bool chmin(T &a, T b) {
    if (a > b) {
        a = b;
        return 1;
    }
    return 0;
}
template <typename T, typename U> T ceil(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? (x + y - 1) / y : x / y);
}
template <typename T, typename U> T floor(T x, U y) {
    assert(y != 0);
    if (y < 0)
        x = -x, y = -y;
    return (x > 0 ? x / y : (x - y + 1) / y);
}
template <typename T> int popcnt(T x) {
    return __builtin_popcountll(x);
}
template <typename T> int topbit(T x) {
    return (x == 0 ? -1 : 63 - __builtin_clzll(x));
}
template <typename T> int lowbit(T x) {
    return (x == 0 ? -1 : __builtin_ctzll(x));
}

template <class T, class U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
    os << "P(" << p.first << ", " << p.second << ")";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) {
    os << "{";
    for (int i = 0; i < vec.size(); i++) {
        os << vec[i] << (i + 1 == vec.size() ? "" : ", ");
    }
    os << "}";
    return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    os << "{";
    for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
        os << "(" << itr->first << ", " << itr->second << ")";
        itr++;
        if (itr != map_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) {
    os << "{";
    for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
        os << *itr;
        ++itr;
        if (itr != set_var.end())
            os << ", ";
        itr--;
    }
    os << "}";
    return os;
}
#ifdef LOCAL
#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)
#else
#define show(...) true
#endif
template <typename T> void _show(int i, T name) {
    cerr << '\n';
}
template <typename T1, typename T2, typename... T3>
void _show(int i, const T1 &a, const T2 &b, const T3 &...c) {
    for (; a[i] != ',' && a[i] != '\0'; i++)
        cerr << a[i];
    cerr << ":" << b << " ";
    _show(i + 1, a, c...);
}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf

uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
    char num[10000][4];
    constexpr Pre() : num() {
        for (int i = 0; i < 10000; i++) {
            int n = i;
            for (int j = 3; j >= 0; j--) {
                num[i][j] = n % 10 | '0';
                n /= 10;
            }
        }
    }
} constexpr pre;

inline void load() {
    memmove(ibuf, ibuf + pil, pir - pil);
    pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
    pil = 0;
    if (pir < SZ)
        ibuf[pir++] = '\n';
}

inline void flush() {
    fwrite(obuf, 1, por, stdout);
    por = 0;
}

void rd(char &c) {
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
}

void rd(string &x) {
    x.clear();
    char c;
    do {
        if (pil + 1 > pir)
            load();
        c = ibuf[pil++];
    } while (isspace(c));
    do {
        x += c;
        if (pil == pir)
            load();
        c = ibuf[pil++];
    } while (!isspace(c));
}

template <typename T> void rd_real(T &x) {
    string s;
    rd(s);
    x = stod(s);
}

template <typename T> void rd_integer(T &x) {
    if (pil + 100 > pir)
        load();
    char c;
    do
        c = ibuf[pil++];
    while (c < '-');
    bool minus = 0;
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (c == '-') {
            minus = 1, c = ibuf[pil++];
        }
    }
    x = 0;
    while ('0' <= c) {
        x = x * 10 + (c & 15), c = ibuf[pil++];
    }
    if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
        if (minus)
            x = -x;
    }
}

void rd(int &x) {
    rd_integer(x);
}
void rd(ll &x) {
    rd_integer(x);
}
void rd(i128 &x) {
    rd_integer(x);
}
void rd(uint &x) {
    rd_integer(x);
}
void rd(ull &x) {
    rd_integer(x);
}
void rd(u128 &x) {
    rd_integer(x);
}
void rd(double &x) {
    rd_real(x);
}
void rd(long double &x) {
    rd_real(x);
}

template <class T, class U> void rd(pair<T, U> &p) {
    return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T> void rd_tuple(T &t) {
    if constexpr (N < std::tuple_size<T>::value) {
        auto &x = std::get<N>(t);
        rd(x);
        rd_tuple<N + 1>(t);
    }
}
template <class... T> void rd(tuple<T...> &tpl) {
    rd_tuple(tpl);
}

template <size_t N = 0, typename T> void rd(array<T, N> &x) {
    for (auto &d : x)
        rd(d);
}
template <class T> void rd(vector<T> &x) {
    for (auto &d : x)
        rd(d);
}

void read() {}
template <class H, class... T> void read(H &h, T &...t) {
    rd(h), read(t...);
}

void wt(const char c) {
    if (por == SZ)
        flush();
    obuf[por++] = c;
}
void wt(const string s) {
    for (char c : s)
        wt(c);
}
void wt(const char *s) {
    size_t len = strlen(s);
    for (size_t i = 0; i < len; i++)
        wt(s[i]);
}

template <typename T> void wt_integer(T x) {
    if (por > SZ - 100)
        flush();
    if (x < 0) {
        obuf[por++] = '-', x = -x;
    }
    int outi;
    for (outi = 96; x >= 10000; outi -= 4) {
        memcpy(out + outi, pre.num[x % 10000], 4);
        x /= 10000;
    }
    if (x >= 1000) {
        memcpy(obuf + por, pre.num[x], 4);
        por += 4;
    } else if (x >= 100) {
        memcpy(obuf + por, pre.num[x] + 1, 3);
        por += 3;
    } else if (x >= 10) {
        int q = (x * 103) >> 10;
        obuf[por] = q | '0';
        obuf[por + 1] = (x - q * 10) | '0';
        por += 2;
    } else
        obuf[por++] = x | '0';
    memcpy(obuf + por, out + outi + 4, 96 - outi);
    por += 96 - outi;
}

template <typename T> void wt_real(T x) {
    ostringstream oss;
    oss << fixed << setprecision(15) << double(x);
    string s = oss.str();
    wt(s);
}

void wt(int x) {
    wt_integer(x);
}
void wt(ll x) {
    wt_integer(x);
}
void wt(i128 x) {
    wt_integer(x);
}
void wt(uint x) {
    wt_integer(x);
}
void wt(ull x) {
    wt_integer(x);
}
void wt(u128 x) {
    wt_integer(x);
}
void wt(double x) {
    wt_real(x);
}
void wt(long double x) {
    wt_real(x);
}

template <class T, class U> void wt(const pair<T, U> val) {
    wt(val.first);
    wt(' ');
    wt(val.second);
}
template <size_t N = 0, typename T> void wt_tuple(const T t) {
    if constexpr (N < std::tuple_size<T>::value) {
        if constexpr (N > 0) {
            wt(' ');
        }
        const auto x = std::get<N>(t);
        wt(x);
        wt_tuple<N + 1>(t);
    }
}
template <class... T> void wt(tuple<T...> tpl) {
    wt_tuple(tpl);
}
template <class T, size_t S> void wt(const array<T, S> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}
template <class T> void wt(const vector<T> val) {
    auto n = val.size();
    for (size_t i = 0; i < n; i++) {
        if (i)
            wt(' ');
        wt(val[i]);
    }
}

void print() {
    wt('\n');
}
template <class Head, class... Tail> void print(Head &&head, Tail &&...tail) {
    wt(head);
    if (sizeof...(Tail))
        wt(' ');
    print(forward<Tail>(tail)...);
}
void __attribute__((destructor)) _d() {
    flush();
}
} // namespace fastio

using fastio::flush;
using fastio::print;
using fastio::read;

inline void first(bool i = true) {
    print(i ? "first" : "second");
}
inline void Alice(bool i = true) {
    print(i ? "Alice" : "Bob");
}
inline void Takahashi(bool i = true) {
    print(i ? "Takahashi" : "Aoki");
}
inline void yes(bool i = true) {
    print(i ? "yes" : "no");
}
inline void Yes(bool i = true) {
    print(i ? "Yes" : "No");
}
inline void No() {
    print("No");
}
inline void YES(bool i = true) {
    print(i ? "YES" : "NO");
}
inline void NO() {
    print("NO");
}
inline void Yay(bool i = true) {
    print(i ? "Yay!" : ":(");
}
inline void Possible(bool i = true) {
    print(i ? "Possible" : "Impossible");
}
inline void POSSIBLE(bool i = true) {
    print(i ? "POSSIBLE" : "IMPOSSIBLE");
}

/**
 * @brief Fast IO
 */
#line 3 "sol.cpp"

#line 2 "library/Math/fastdiv.hpp"

struct FastDiv {
    using u64 = uint64_t;
    using u128 = __uint128_t;
    constexpr FastDiv() : m(), s(), x() {}
    constexpr FastDiv(int _m)
        : m(_m), s(__lg(m - 1)), x(((u128(1) << (s + 64)) + m - 1) / m) {}
    constexpr int get() {
        return m;
    }
    constexpr friend u64 operator/(u64 n, const FastDiv &d) {
        return (u128(n) * d.x >> d.s) >> 64;
    }
    constexpr friend int operator%(u64 n, const FastDiv &d) {
        return n - n / d * d.m;
    }
    constexpr pair<u64, int> divmod(u64 n) const {
        u64 q = n / (*this);
        return {q, n - q * m};
    }
    int m, s;
    u64 x;
};

struct FastDiv64 {
    using u64 = uint64_t;
    using u128 = __uint128_t;
    u128 mod, mh, ml;
    explicit FastDiv64(u64 mod = 1) : mod(mod) {
        u128 m = u128(-1) / mod;
        if (m * mod + mod == u128(0))
            ++m;
        mh = m >> 64;
        ml = m & u64(-1);
    }
    u64 umod() const {
        return mod;
    }
    u64 modulo(u128 x) {
        u128 z = (x & u64(-1)) * ml;
        z = (x & u64(-1)) * mh + (x >> 64) * ml + (z >> 64);
        z = (x >> 64) * mh + (z >> 64);
        x -= z * mod;
        return x < mod ? x : x - mod;
    }
    u64 mul(u64 a, u64 b) {
        return modulo(u128(a) * b);
    }
};

/**
 * @brief Fast Division
 */
#line 3 "library/Math/dynamic.hpp"

struct Fp {
    using u64 = uint64_t;
    uint v;
    static int get_mod() {
        return _getmod();
    }
    static void set_mod(int _m) {
        bar = FastDiv(_m);
    }
    Fp inv() const {
        int tmp, a = v, b = get_mod(), x = 1, y = 0;
        while (b) {
            tmp = a / b, a -= tmp * b;
            swap(a, b);
            x -= tmp * y;
            swap(x, y);
        }
        if (x < 0) {
            x += get_mod();
        }
        return x;
    }
    Fp() : v(0) {}
    Fp(ll x) {
        v = x % get_mod();
        if (v < 0)
            v += get_mod();
    }
    Fp operator-() const {
        return Fp() - *this;
    }
    Fp pow(ll t) {
        assert(t >= 0);
        Fp res = 1, b = *this;
        while (t) {
            if (t & 1)
                res *= b;
            b *= b;
            t >>= 1;
        }
        return res;
    }
    Fp &operator+=(const Fp &x) {
        v += x.v;
        if (v >= get_mod())
            v -= get_mod();
        return *this;
    }
    Fp &operator-=(const Fp &x) {
        v += get_mod() - x.v;
        if (v >= get_mod())
            v -= get_mod();
        return *this;
    }
    Fp &operator*=(const Fp &x) {
        v = (u64(v) * x.v) % bar;
        return *this;
    }
    Fp &operator/=(const Fp &x) {
        (*this) *= x.inv();
        return *this;
    }
    Fp operator+(const Fp &x) const {
        return Fp(*this) += x;
    }
    Fp operator-(const Fp &x) const {
        return Fp(*this) -= x;
    }
    Fp operator*(const Fp &x) const {
        return Fp(*this) *= x;
    }
    Fp operator/(const Fp &x) const {
        return Fp(*this) /= x;
    }
    bool operator==(const Fp &x) const {
        return v == x.v;
    }
    bool operator!=(const Fp &x) const {
        return v != x.v;
    }
    friend istream &operator>>(istream &is, Fp &x) {
        return is >> x.v;
    }
    friend ostream &operator<<(ostream &os, const Fp &x) {
        return os << x.v;
    }

  private:
    static FastDiv bar;
    static int _getmod() {
        return bar.get();
    }
};
FastDiv Fp::bar(998244353);

void rd(Fp &x) {
    fastio::rd(x.v);
}
void wt(Fp x) {
    fastio::wt(x.v);
}

/**
 * @brief Dynamic Modint
 */
#line 2 "library/Math/comb.hpp"

template <typename T> T Inv(ll n) {
    static int md;
    static vector<T> buf({0, 1});
    if (md != T::get_mod()) {
        md = T::get_mod();
        buf = vector<T>({0, 1});
    }
    assert(n > 0);
    n %= md;
    while (SZ(buf) <= n) {
        int k = SZ(buf), q = (md + k - 1) / k;
        buf.push_back(buf[k * q - md] * q);
    }
    return buf[n];
}

template <typename T> T Fact(ll n, bool inv = 0) {
    static int md;
    static vector<T> buf({1, 1}), ibuf({1, 1});
    if (md != T::get_mod()) {
        md = T::get_mod();
        buf = ibuf = vector<T>({1, 1});
    }
    assert(n >= 0 and n < md);
    while (SZ(buf) <= n) {
        buf.push_back(buf.back() * SZ(buf));
        ibuf.push_back(ibuf.back() * Inv<T>(SZ(ibuf)));
    }
    return inv ? ibuf[n] : buf[n];
}

template <typename T> T nPr(int n, int r, bool inv = 0) {
    if (n < 0 || n < r || r < 0)
        return 0;
    return Fact<T>(n, inv) * Fact<T>(n - r, inv ^ 1);
}
template <typename T> T nCr(int n, int r, bool inv = 0) {
    if (n < 0 || n < r || r < 0)
        return 0;
    return Fact<T>(n, inv) * Fact<T>(r, inv ^ 1) * Fact<T>(n - r, inv ^ 1);
}
// sum = n, r tuples
template <typename T> T nHr(int n, int r, bool inv = 0) {
    return nCr<T>(n + r - 1, r - 1, inv);
}
// sum = n, a nonzero tuples and b tuples
template <typename T> T choose(int n, int a, int b) {
    if (n == 0)
        return !a;
    return nCr<T>(n + b - 1, a + b - 1);
}

/**
 * @brief Combination
 */
#line 6 "sol.cpp"

#line 2 "library/Convolution/ntt.hpp"

template <typename T> struct NTT {
    static constexpr int rank2 = __builtin_ctzll(T::get_mod() - 1);
    std::array<T, rank2 + 1> root;  // root[i]^(2^i) == 1
    std::array<T, rank2 + 1> iroot; // root[i] * iroot[i] == 1

    std::array<T, std::max(0, rank2 - 2 + 1)> rate2;
    std::array<T, std::max(0, rank2 - 2 + 1)> irate2;

    std::array<T, std::max(0, rank2 - 3 + 1)> rate3;
    std::array<T, std::max(0, rank2 - 3 + 1)> irate3;

    NTT() {
        T g = 2;
        while (g.pow((T::get_mod() - 1) >> 1) == 1) {
            g += 1;
        }
        root[rank2] = g.pow((T::get_mod() - 1) >> rank2);
        iroot[rank2] = root[rank2].inv();
        for (int i = rank2 - 1; i >= 0; i--) {
            root[i] = root[i + 1] * root[i + 1];
            iroot[i] = iroot[i + 1] * iroot[i + 1];
        }

        {
            T prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 2; i++) {
                rate2[i] = root[i + 2] * prod;
                irate2[i] = iroot[i + 2] * iprod;
                prod *= iroot[i + 2];
                iprod *= root[i + 2];
            }
        }
        {
            T prod = 1, iprod = 1;
            for (int i = 0; i <= rank2 - 3; i++) {
                rate3[i] = root[i + 3] * prod;
                irate3[i] = iroot[i + 3] * iprod;
                prod *= iroot[i + 3];
                iprod *= root[i + 3];
            }
        }
    }

    void ntt(std::vector<T> &a, bool type = 0) {
        int n = int(a.size());
        int h = __builtin_ctzll((unsigned int)n);
        a.resize(1 << h);

        if (type) {
            int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
            while (len) {
                if (len == 1) {
                    int p = 1 << (h - len);
                    T irot = 1;
                    for (int s = 0; s < (1 << (len - 1)); s++) {
                        int offset = s << (h - len + 1);
                        for (int i = 0; i < p; i++) {
                            auto l = a[i + offset];
                            auto r = a[i + offset + p];
                            a[i + offset] = l + r;
                            a[i + offset + p] =
                                (unsigned long long)(T::get_mod() + l.v - r.v) *
                                irot.v;
                            ;
                        }
                        if (s + 1 != (1 << (len - 1)))
                            irot *= irate2[__builtin_ctzll(~(unsigned int)(s))];
                    }
                    len--;
                } else {
                    // 4-base
                    int p = 1 << (h - len);
                    T irot = 1, iimag = iroot[2];
                    for (int s = 0; s < (1 << (len - 2)); s++) {
                        T irot2 = irot * irot;
                        T irot3 = irot2 * irot;
                        int offset = s << (h - len + 2);
                        for (int i = 0; i < p; i++) {
                            auto a0 = 1ULL * a[i + offset + 0 * p].v;
                            auto a1 = 1ULL * a[i + offset + 1 * p].v;
                            auto a2 = 1ULL * a[i + offset + 2 * p].v;
                            auto a3 = 1ULL * a[i + offset + 3 * p].v;

                            auto a2na3iimag =
                                1ULL * T((T::get_mod() + a2 - a3) * iimag.v).v;

                            a[i + offset] = a0 + a1 + a2 + a3;
                            a[i + offset + 1 * p] =
                                (a0 + (T::get_mod() - a1) + a2na3iimag) *
                                irot.v;
                            a[i + offset + 2 * p] =
                                (a0 + a1 + (T::get_mod() - a2) +
                                 (T::get_mod() - a3)) *
                                irot2.v;
                            a[i + offset + 3 * p] =
                                (a0 + (T::get_mod() - a1) +
                                 (T::get_mod() - a2na3iimag)) *
                                irot3.v;
                        }
                        if (s + 1 != (1 << (len - 2)))
                            irot *= irate3[__builtin_ctzll(~(unsigned int)(s))];
                    }
                    len -= 2;
                }
            }
            T e = T(n).inv();
            for (auto &x : a)
                x *= e;
        } else {
            int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed
            while (len < h) {
                if (h - len == 1) {
                    int p = 1 << (h - len - 1);
                    T rot = 1;
                    for (int s = 0; s < (1 << len); s++) {
                        int offset = s << (h - len);
                        for (int i = 0; i < p; i++) {
                            auto l = a[i + offset];
                            auto r = a[i + offset + p] * rot;
                            a[i + offset] = l + r;
                            a[i + offset + p] = l - r;
                        }
                        if (s + 1 != (1 << len))
                            rot *= rate2[__builtin_ctzll(~(unsigned int)(s))];
                    }
                    len++;
                } else {
                    // 4-base
                    int p = 1 << (h - len - 2);
                    T rot = 1, imag = root[2];
                    for (int s = 0; s < (1 << len); s++) {
                        T rot2 = rot * rot;
                        T rot3 = rot2 * rot;
                        int offset = s << (h - len);
                        for (int i = 0; i < p; i++) {
                            auto mod2 = 1ULL * T::get_mod() * T::get_mod();
                            auto a0 = 1ULL * a[i + offset].v;
                            auto a1 = 1ULL * a[i + offset + p].v * rot.v;
                            auto a2 = 1ULL * a[i + offset + 2 * p].v * rot2.v;
                            auto a3 = 1ULL * a[i + offset + 3 * p].v * rot3.v;
                            auto a1na3imag =
                                1ULL * T(a1 + mod2 - a3).v * imag.v;
                            auto na2 = mod2 - a2;
                            a[i + offset] = a0 + a2 + a1 + a3;
                            a[i + offset + 1 * p] =
                                a0 + a2 + (2 * mod2 - (a1 + a3));
                            a[i + offset + 2 * p] = a0 + na2 + a1na3imag;
                            a[i + offset + 3 * p] =
                                a0 + na2 + (mod2 - a1na3imag);
                        }
                        if (s + 1 != (1 << len))
                            rot *= rate3[__builtin_ctzll(~(unsigned int)(s))];
                    }
                    len += 2;
                }
            }
        }
    }
    vector<T> mult(const vector<T> &a, const vector<T> &b) {
        if (a.empty() or b.empty())
            return vector<T>();
        int as = a.size(), bs = b.size();
        int n = as + bs - 1;
        if (as <= 30 or bs <= 30) {
            if (as > 30)
                return mult(b, a);
            vector<T> res(n);
            rep(i, 0, as) rep(j, 0, bs) res[i + j] += a[i] * b[j];
            return res;
        }
        int m = 1;
        while (m < n)
            m <<= 1;
        vector<T> res(m);
        rep(i, 0, as) res[i] = a[i];
        ntt(res);
        if (a == b)
            rep(i, 0, m) res[i] *= res[i];
        else {
            vector<T> c(m);
            rep(i, 0, bs) c[i] = b[i];
            ntt(c);
            rep(i, 0, m) res[i] *= c[i];
        }
        ntt(res, 1);
        res.resize(n);
        return res;
    }
};

/**
 * @brief Number Theoretic Transform
 */
#line 2 "library/Math/modint.hpp"

template <unsigned mod = 1000000007> struct fp {
    unsigned v;
    static constexpr int get_mod() {
        return mod;
    }
    constexpr unsigned inv() const {
        assert(v != 0);
        int x = v, y = mod, p = 1, q = 0, t = 0, tmp = 0;
        while (y > 0) {
            t = x / y;
            x -= t * y, p -= t * q;
            tmp = x, x = y, y = tmp;
            tmp = p, p = q, q = tmp;
        }
        if (p < 0)
            p += mod;
        return p;
    }
    constexpr fp(ll x = 0) : v(x >= 0 ? x % mod : (mod - (-x) % mod) % mod) {}
    fp operator-() const {
        return fp() - *this;
    }
    fp pow(ull t) {
        fp res = 1, b = *this;
        while (t) {
            if (t & 1)
                res *= b;
            b *= b;
            t >>= 1;
        }
        return res;
    }
    fp &operator+=(const fp &x) {
        if ((v += x.v) >= mod)
            v -= mod;
        return *this;
    }
    fp &operator-=(const fp &x) {
        if ((v += mod - x.v) >= mod)
            v -= mod;
        return *this;
    }
    fp &operator*=(const fp &x) {
        v = ull(v) * x.v % mod;
        return *this;
    }
    fp &operator/=(const fp &x) {
        v = ull(v) * x.inv() % mod;
        return *this;
    }
    fp operator+(const fp &x) const {
        return fp(*this) += x;
    }
    fp operator-(const fp &x) const {
        return fp(*this) -= x;
    }
    fp operator*(const fp &x) const {
        return fp(*this) *= x;
    }
    fp operator/(const fp &x) const {
        return fp(*this) /= x;
    }
    bool operator==(const fp &x) const {
        return v == x.v;
    }
    bool operator!=(const fp &x) const {
        return v != x.v;
    }
    friend istream &operator>>(istream &is, fp &x) {
        return is >> x.v;
    }
    friend ostream &operator<<(ostream &os, const fp &x) {
        return os << x.v;
    }
};

template <unsigned mod> void rd(fp<mod> &x) {
    fastio::rd(x.v);
}
template <unsigned mod> void wt(fp<mod> x) {
    fastio::wt(x.v);
}

/**
 * @brief Modint
 */
#line 4 "library/Convolution/arbitrary.hpp"

using M1 = fp<1045430273>;
using M2 = fp<1051721729>;
using M3 = fp<1053818881>;
NTT<M1> N1;
NTT<M2> N2;
NTT<M3> N3;
constexpr int r_12 = M2(M1::get_mod()).inv();
constexpr int r_13 = M3(M1::get_mod()).inv();
constexpr int r_23 = M3(M2::get_mod()).inv();
constexpr int r_1323 = M3(ll(r_13) * r_23).v;
constexpr ll w1 = M1::get_mod();
constexpr ll w2 = ll(w1) * M2::get_mod();
template <typename T>
vector<T> ArbitraryMult(const vector<int> &a, const vector<int> &b) {
    if (a.empty() or b.empty())
        return vector<T>();
    int n = a.size() + b.size() - 1;
    vector<T> res(n);
    if (min(a.size(), b.size()) <= 60) {
        rep(i, 0, a.size()) rep(j, 0, b.size()) res[i + j] += T(a[i]) * b[j];
        return res;
    }
    vector<int> vals[3];
    vector<M1> a1(ALL(a)), b1(ALL(b)), c1 = N1.mult(a1, b1);
    vector<M2> a2(ALL(a)), b2(ALL(b)), c2 = N2.mult(a2, b2);
    vector<M3> a3(ALL(a)), b3(ALL(b)), c3 = N3.mult(a3, b3);
    for (M1 x : c1)
        vals[0].push_back(x.v);
    for (M2 x : c2)
        vals[1].push_back(x.v);
    for (M3 x : c3)
        vals[2].push_back(x.v);
    rep(i, 0, n) {
        ll p = vals[0][i];
        ll q = (vals[1][i] + M2::get_mod() - p) * r_12 % M2::get_mod();
        ll r = ((vals[2][i] + M3::get_mod() - p) * r_1323 +
                (M3::get_mod() - q) * r_23) %
               M3::get_mod();
        res[i] = (T(r) * w2 + q * w1 + p);
    }
    return res;
}

template <typename T>
vector<T> ArbitraryMult(const vector<T> &a, const vector<T> &b) {
    vector<int> A, B;
    for (auto &x : a)
        A.push_back(x.v);
    for (auto &x : b)
        B.push_back(x.v);
    return ArbitraryMult<T>(A, B);
}

/**
 * @brief Arbitrary Mod Convolution
 */
#line 8 "sol.cpp"

int main() {
    int n, k, M;
    read(n, k, M);
    Fp::set_mod(M);

    // {
    //     vector<Fp> ex(n);
    //     vector<int> p(n);
    //     vector<int> sz(n);
    //     auto dfs = [&](auto &dfs, int v) -> void {
    //         sz[v] = 1;
    //         rep(to, v + 1, n) if (p[to] == v) {
    //             dfs(dfs, to);
    //             sz[v] += sz[to];
    //         }
    //     };
    //     vector cnt(n, vector<ll>(n + 1));
    //     auto rec = [&](auto &rec, int i) -> void {
    //         if (i == n) {
    //             dfs(dfs, 0);
    //             rep(v, 0, n) {
    //                 ex[v] += Fp(sz[v]).pow(k);
    //                 cnt[v][sz[v]] += 1;
    //             }
    //             return;
    //         }
    //         rep(par, 0, i) {
    //             p[i] = par;
    //             rec(rec, i + 1);
    //             p[i] = -1;
    //         }
    //     };
    //     rec(rec, 1);
    //     rep(v, 0, n) {
    //         ex[v] *= Fact<Fp>(n - 1, 1);
    //         show(ex[v]);
    //     }
    //     // rep(v, 1, n) {
    //     //     rep(j, 1, n + 1) if (cnt[v][j] > 0) {
    //     //         int ans = v;
    //     //         rep(x, 1, n - v) ans *= x;
    //     //         rep(x, 1, n - j) ans *= x;
    //     //         rep(x, 1, n - v - j + 1) ans /= x;
    //     //         show(cnt[v][j], ans);
    //     //         assert(cnt[v][j] == ans);
    //     //     }
    //     // }
    // }

    vector<Fp> f(n + 1), g(n + 1);
    rep(i, 0, n + 1) {
        if (n - i - 1 >= 0)
            f[i] = Fp(i).pow(k) * Fact<Fp>(n - i - 1);
        g[i] = Fact<Fp>(i, 1);
    }
    f = ArbitraryMult(f, g);

    rep(v, 0, n) {
        Fp ret = f[n - v];
        // rep(j, 0, n) {
        //     if (n - v - j < 0)
        //         continue;
        //     Fp add =
        //         Fp(j).pow(k) * Fact<Fp>(n - j - 1) * Fact<Fp>(n - v - j, 1);
        //     ret += add;
        // }

        ret *= Fact<Fp>(k, 1);
        ret *= v;
        ret *= Fact<Fp>(n - v - 1);
        ret *= Fact<Fp>(n - 1, 1);
        ret *= 2;
        if (v == 0)
            ret = Fp(n).pow(k);
        print(ret);
    }
    return 0;
}

詳細信息

Test #1:

score: 0
Wrong Answer
time: 0ms
memory: 3712kb

input:

3 1 1000000007

output:

3
3
2

result:

wrong answer 2nd numbers differ - expected: '500000005', found: '3'