QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#878779#9700. Ying’s Cupucup-team112#WA 0ms3712kbC++2323.9kb2025-02-01 17:37:432025-02-01 17:37:43

Judging History

This is the latest submission verdict.

  • [2025-02-01 17:37:43]
  • Judged
  • Verdict: WA
  • Time: 0ms
  • Memory: 3712kb
  • [2025-02-01 17:37:43]
  • Submitted

answer


//#define _GLIBCXX_DEBUG

//#pragma GCC target("avx2")
//#pragma GCC optimize("O3")
//#pragma GCC optimize("unroll-loops")

#include<bits/stdc++.h>
using namespace std;


#ifdef LOCAL
#include <debug_print.hpp>
#define OUT(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__)
#else
#define OUT(...) (static_cast<void>(0))
#endif

#define endl '\n'
#define lfs cout<<fixed<<setprecision(15)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)

namespace template_tute{
  using ll = long long;
  using ld = long double;
  const ll MOD1 = 1e9+7;
  const ll MOD9 = 998244353;
  const ll INF = 4.1e18;
  using P = pair<ll, ll>;
  template<typename T> using PQ = priority_queue<T>;
  template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
  template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
  template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
  ll median(ll a,ll b, ll c){return a+b+c-max<ll>({a,b,c})-min<ll>({a,b,c});}
  void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
  void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
  void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
  template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
  template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
  template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
  template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
  template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
  template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
  template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
  template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
  template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
  template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
  template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
  template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
  template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
  template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
  template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
  template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
  vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
  template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
  template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
  template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << "(" << p.first << "," << p.second << ")";}
  template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){os<<"[";for(auto &z:v)os << z << ",";os<<"]"; return os;}
  template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
    auto tmp = v;
    for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
  }
  template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
    rearrange(ord, head);
    rearrange(ord, tail...);
  }
  template<typename T> vector<int> ascend(const vector<T>&v){
    vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
    sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],i)<make_pair(v[j],j);});
    return ord;
  }
  template<typename T> vector<int> descend(const vector<T>&v){
    vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
    sort(ord.begin(),ord.end(),[&](int i,int j){return make_pair(v[i],-i)>make_pair(v[j],-j);});
    return ord;
  }
  template<typename T> vector<T> inv_perm(const vector<T>&ord){
    vector<T>inv(ord.size());
    for(int i=0;i<ord.size();i++)inv[ord[i]] = i;
    return inv;
  }
  ll FLOOR(ll n,ll div){assert(div>0);return n>=0?n/div:(n-div+1)/div;}
  ll CEIL(ll n,ll div){assert(div>0);return n>=0?(n+div-1)/div:n/div;}
  ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
  ll modulo(ll n,ll d){return (n%d+d)%d;};
  template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
  template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
  template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
  template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
  //mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
  int popcount(ll x){return __builtin_popcountll(x);};
  int poplow(ll x){return __builtin_ctzll(x);};
  int pophigh(ll x){return 63 - __builtin_clzll(x);};
  template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
  template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
  template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
  template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
  ll MULT(ll x,ll y){if(LLONG_MAX/x<=y)return LLONG_MAX;return x*y;}
  ll POW2(ll x, ll k){ll ret=1,mul=x;while(k){if(mul==LLONG_MAX)return LLONG_MAX;if(k&1)ret=MULT(ret,mul);mul=MULT(mul,mul);k>>=1;}return ret;}
  ll POW(ll x, ll k){ll ret=1;for(int i=0;i<k;i++){if(LLONG_MAX/x<=ret)return LLONG_MAX;ret*=x;}return ret;}
  std::ostream &operator<<(std::ostream &dest, __int128_t value) {
    std::ostream::sentry s(dest);
    if (s) {
      __uint128_t tmp = value < 0 ? -value : value;
      char buffer[128];
      char *d = std::end(buffer);
      do {
        --d;
        *d = "0123456789"[tmp % 10];
        tmp /= 10;
      } while (tmp != 0);
      if (value < 0) {
        --d;
        *d = '-';
      }
      int len = std::end(buffer) - d;
      if (dest.rdbuf()->sputn(d, len) != len) {
        dest.setstate(std::ios_base::badbit);
      }
    }
    return dest;
  }
  namespace converter{
    int dict[500];
    const string lower="abcdefghijklmnopqrstuvwxyz";
    const string upper="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
    const string digit="0123456789";
    const string digit1="123456789";
    void regi_str(const string &t){
      for(int i=0;i<t.size();i++){
        dict[t[i]]=i;
      }
    }
    void regi_int(const string &t){
      for(int i=0;i<t.size();i++){
        dict[i]=t[i];
      }
    }
    vector<int>to_int(const string &s,const string &t){
      regi_str(t);
      vector<int>ret(s.size());
      for(int i=0;i<s.size();i++){
        ret[i]=dict[s[i]];
      }
      return ret;
    }
    vector<int>to_int(const string &s){
      auto t=s;
      sort(t.begin(),t.end());
      t.erase(unique(t.begin(),t.end()),t.end());
      return to_int(s,t);
    }
    
    vector<vector<int>>to_int(const vector<string>&s,const string &t){
      regi_str(t);
      vector<vector<int>>ret(s.size(),vector<int>(s[0].size()));
      for(int i=0;i<s.size();i++){
        for(int j=0;j<s[0].size();j++){
          ret[i][j]=dict[s[i][j]];
        }
      }
      return ret;
    }
    vector<vector<int>>to_int(const vector<string>&s){
      string t;
      for(int i=0;i<s.size();i++){
        t+=s[i];
      }
      sort(t.begin(),t.end());t.erase(unique(t.begin(),t.end()),t.end());
      return to_int(s,t);
    }
    string to_str(const vector<int>&s,const string &t){
      regi_int(t);
      string ret;
      for(auto z:s)ret+=dict[z];
      return ret;
    }
    vector<string> to_str(const vector<vector<int>>&s,const string &t){
      regi_int(t);
      vector<string>ret(s.size());
      for(int i=0;i<s.size();i++){
        for(auto z:s[i])ret[i]+=dict[z];
      }
      return ret;
    }
  }
  template< typename T = int >
  struct edge {
    int to;
    T cost;
    int id;
    edge():to(-1),id(-1){};
    edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
    operator int() const { return to; }
  };

  template<typename T>
  using Graph = vector<vector<edge<T>>>;
  template<typename T>
  Graph<T>revgraph(const Graph<T> &g){
    Graph<T>ret(g.size());
    for(int i=0;i<g.size();i++){
      for(auto e:g[i]){
        int to = e.to;
        e.to = i;
        ret[to].push_back(e);
      }
    }
    return ret;
  }
  template<typename T>
  Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
    Graph<T> ret(n);
    for(int es = 0; es < m; es++){
      int u,v;
      T w=1;
      cin>>u>>v;u-=indexed,v-=indexed;
      if(weighted)cin>>w;
      ret[u].emplace_back(v,w,es);
      if(!directed)ret[v].emplace_back(u,w,es);
    }
    return ret;
  }
  template<typename T>
  Graph<T> readParent(int n,int indexed=1,bool directed=true){
    Graph<T>ret(n);
    for(int i=1;i<n;i++){
      int p;cin>>p;
      p-=indexed;
      ret[p].emplace_back(i);
      if(!directed)ret[i].emplace_back(p);
    }
    return ret;
  }
}
using namespace template_tute;

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  friend ModInt operator+(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) += rhs;
  }
  friend ModInt operator-(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) -= rhs;
  }
  friend ModInt operator*(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) *= rhs;
  }
  friend ModInt operator/(const ModInt& lhs, const ModInt& rhs) {
        return ModInt(lhs) /= rhs;
  }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  pair<int,int>frac(){
    for(int j=1;j<=10000;j++){
      auto v=*this*j;
      if(v.x<=10000)return make_pair(v.x,j);
      else if(v.x>=mod-10000)return make_pair(-(v.x-mod),j);
    }
    return make_pair(-1,-1);
  }
  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static constexpr int get_mod() { return mod; }
};

template< typename T >
struct Combination {
  vector< T > _fact, _rfact, _inv;

  Combination(ll sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) {
    _fact[0] = _rfact[sz] = _inv[0] = 1;
    for(ll i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i;
    _rfact[sz] /= _fact[sz];
    for(ll i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1);
    for(ll i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1];
  }

  inline T fact(ll k) const { return _fact[k]; }

  inline T rfact(ll k) const { return _rfact[k]; }

  inline T inv(ll k) const { return _inv[k]; }

  T P(ll n, ll r) const {
    if(r < 0 || n < r) return 0;
    return fact(n) * rfact(n - r);
  }

  T C(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return fact(p) * rfact(q) * rfact(p - q);
  }

  T RC(ll p, ll q) const {
    if(q < 0 || p < q) return 0;
    return rfact(p) * fact(q) * fact(p - q);
  }

  T H(ll n, ll r) const {
    if(n < 0 || r < 0) return (0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
  //+1がm個、-1がn個で prefix sumが常にk以上
  T catalan(ll m,ll n,ll k){
    if(n>m-k)return 0;
    else return C(n+m,m)-C(n+m,n+k-1);
  }
};
using modint = ModInt< MOD9 >;modint mpow(ll n, ll x){return modint(n).pow(x);}modint mpow(modint n, ll x){return n.pow(x);}
//using modint=ld;modint mpow(ll n, ll x){return pow(n,x);}modint mpow(modint n, ll x){return pow(n,x);}
using Comb=Combination<modint>;

template< typename Mint >
struct NumberTheoreticTransformFriendlyModInt {
  static constexpr uint32_t get_pr() {
    uint32_t _mod = Mint::get_mod();
    using u64 = uint64_t;
    u64 ds[32] = {};
    int idx = 0;
    u64 m = _mod - 1;
    for (u64 i = 2; i * i <= m; ++i) {
      if (m % i == 0) {
        ds[idx++] = i;
        while (m % i == 0) m /= i;
      }
    }
    if (m != 1) ds[idx++] = m;

    uint32_t _pr = 2;
    while (1) {
      int flg = 1;
      for (int i = 0; i < idx; ++i) {
        u64 a = _pr, b = (_mod - 1) / ds[i], r = 1;
        while (b) {
          if (b & 1) r = r * a % _mod;
          a = a * a % _mod;
          b >>= 1;
        }
        if (r == 1) {
          flg = 0;
          break;
        }
      }
      if (flg == 1) break;
      ++_pr;
    }
    return _pr;
  };
  static constexpr uint32_t root = get_pr();
  static vector< Mint > dw, idw;
  NumberTheoreticTransformFriendlyModInt() = default;
  static void init() {
    dw.resize(level);
    idw.resize(level);
    setwy(level);
  }

  static void fft4(vector<Mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      Mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    if (k & 1) {
      int v = 1 << (k - 1);
      for (int j = 0; j < v; ++j) {
        Mint ajv = a[j + v];
        a[j + v] = a[j] - ajv;
        a[j] += ajv;
      }
    }
    int u = 1 << (2 + (k & 1));
    int v = 1 << (k - 2 - (k & 1));
    Mint one = Mint(1);
    Mint imag = dw[1];
    while (v) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = j1 + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          Mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          Mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          Mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j1] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j3] = t0m2 - t1m3;
        }
      }
      // jh >= 1
      Mint ww = one, xx = one * dw[2], wx = one;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, wx = ww * xx;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          Mint t0 = a[j0], t1 = a[j0 + v] * xx, t2 = a[j2] * ww,
               t3 = a[j2 + v] * wx;
          Mint t0p2 = t0 + t2, t1p3 = t1 + t3;
          Mint t0m2 = t0 - t2, t1m3 = (t1 - t3) * imag;
          a[j0] = t0p2 + t1p3, a[j0 + v] = t0p2 - t1p3;
          a[j2] = t0m2 + t1m3, a[j2 + v] = t0m2 - t1m3;
        }
        xx *= dw[__builtin_ctzll((jh += 4))];
      }
      u <<= 2;
      v >>= 2;
    }
  }

  static void ifft4(vector<Mint> &a, int k) {
    if ((int)a.size() <= 1) return;
    if (k == 1) {
      Mint a1 = a[1];
      a[1] = a[0] - a[1];
      a[0] = a[0] + a1;
      return;
    }
    int u = 1 << (k - 2);
    int v = 1;
    Mint one = Mint(1);
    Mint imag = idw[1];
    while (u) {
      // jh = 0
      {
        int j0 = 0;
        int j1 = v;
        int j2 = v + v;
        int j3 = j2 + v;
        for (; j0 < v; ++j0, ++j1, ++j2, ++j3) {
          Mint t0 = a[j0], t1 = a[j1], t2 = a[j2], t3 = a[j3];
          Mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          Mint t0m1 = t0 - t1, t2m3 = (t2 - t3) * imag;
          a[j0] = t0p1 + t2p3, a[j2] = t0p1 - t2p3;
          a[j1] = t0m1 + t2m3, a[j3] = t0m1 - t2m3;
        }
      }
      // jh >= 1
      Mint ww = one, xx = one * idw[2], yy = one;
      u <<= 2;
      for (int jh = 4; jh < u;) {
        ww = xx * xx, yy = xx * imag;
        int j0 = jh * v;
        int je = j0 + v;
        int j2 = je + v;
        for (; j0 < je; ++j0, ++j2) {
          Mint t0 = a[j0], t1 = a[j0 + v], t2 = a[j2], t3 = a[j2 + v];
          Mint t0p1 = t0 + t1, t2p3 = t2 + t3;
          Mint t0m1 = (t0 - t1) * xx, t2m3 = (t2 - t3) * yy;
          a[j0] = t0p1 + t2p3, a[j2] = (t0p1 - t2p3) * ww;
          a[j0 + v] = t0m1 + t2m3, a[j2 + v] = (t0m1 - t2m3) * ww;
        }
        xx *= idw[__builtin_ctzll(jh += 4)];
      }
      u >>= 4;
      v <<= 2;
    }
    if (k & 1) {
      u = 1 << (k - 1);
      for (int j = 0; j < u; ++j) {
        Mint ajv = a[j] - a[j + u];
        a[j] += a[j + u];
        a[j + u] = ajv;
      }
    }
  }

  static void ntt(vector<Mint> &a) {
    if ((int)a.size() <= 1) return;
    fft4(a, __builtin_ctz(a.size()));
  }

  static void intt(vector<Mint> &a) {
    if ((int)a.size() <= 1) return;
    ifft4(a, __builtin_ctz(a.size()));
    Mint iv = Mint(a.size()).inverse();
    for (auto &x : a) x *= iv;
  }

  static constexpr int mod = Mint::get_mod();
  static constexpr int level = __builtin_ctzll(mod - 1);
  static void setwy(int k) {
    Mint w[level], y[level];
    w[k - 1] = Mint(root).pow((mod - 1) / (1 << k));
    y[k - 1] = w[k - 1].inverse();
    for (int i = k - 2; i > 0; --i)
      w[i] = w[i + 1] * w[i + 1], y[i] = y[i + 1] * y[i + 1];
    dw[1] = w[1], idw[1] = y[1], dw[2] = w[2], idw[2] = y[2];
    for (int i = 3; i < k; ++i) {
      dw[i] = dw[i - 1] * y[i - 2] * w[i];
      idw[i] = idw[i - 1] * w[i - 2] * y[i];
    }
  }
  static vector<Mint>ffted(const vector<Mint>&a,int sz){
    int k=2,M=4;
    while(M<sz)M<<=1,++k;
    setwy(k);
    vector<Mint>ret(M);
    for(int i=0;i<(int)a.size();i++)ret[i]=a[i];
    fft4(ret,k);
    return ret;
  }

  static vector<Mint> multiply(const vector<Mint> &a, const vector<Mint> &b
  ,vector<Mint>sa=vector<Mint>(),vector<Mint>sb=vector<Mint>()
  ) {
    //OUT(l,a,b);
    int l=a.size()+b.size()-1;
    if (min<int>(a.size(), b.size()) <= 30) {
      vector<Mint> s(l);
      for (int i = 0; i < (int)a.size(); ++i)
        for (int j = 0; j < (int)b.size(); ++j) s[i + j] += a[i] * b[j];
      return s;
    }
    int k = 2, M = 4;
    while (M < l) M <<= 1, ++k;
    setwy(k);
    vector<Mint> s(M);
    if(sa.empty()){
      for (int i = 0; i < (int)a.size(); ++i) s[i] = a[i];
      fft4(s, k);
    }
    else{
      s=sa;
    }
    if (a.size() == b.size() && a == b) {
      for (int i = 0; i < M; ++i) s[i] *= s[i];
    } else {
      vector<Mint> t(M);
      if(!sb.empty()){
        t=sb;
      }
      else{
        for (int i = 0; i < (int)b.size(); ++i) t[i] = b[i];
        fft4(t, k);
      }
      for (int i = 0; i < M; ++i) s[i] *= t[i];
    }
    ifft4(s, k);
    s.resize(l);
    Mint invm = Mint(M).inverse();
    for (int i = 0; i < l; ++i) s[i] *= invm;
    return s;
  }

  static void ntt_doubling(vector<Mint> &a) {
    int M = (int)a.size();
    auto b = a;
    intt(b);
    Mint r = 1, zeta = Mint(root).pow((Mint::get_mod() - 1) / (M << 1));
    for (int i = 0; i < M; i++) b[i] *= r, r *= zeta;
    ntt(b);
    copy(begin(b), end(b), back_inserter(a));
  }
};
template< typename Mint >
vector< Mint >  NumberTheoreticTransformFriendlyModInt<Mint>::dw = vector< Mint >();
template< typename Mint >
vector< Mint > NumberTheoreticTransformFriendlyModInt< Mint >::idw = vector< Mint >();



//ret[i-j]=x[i]*y[j]
template<typename Conv, typename T>
vector<T>multiply_minus(vector<T>x,vector<T>y){
  reverse(y.begin(),y.end());
  auto tmp = Conv::multiply(x,y);
  vector<T>ret(x.size());
  for(int i = 0; i < x.size(); i++){
    ret[i] = tmp[y.size() - 1 + i];
  }
  return ret;
}
//
void solve(){
	ll res=0,buf=0;
  bool judge = true;
  NumberTheoreticTransformFriendlyModInt<modint>::init();
  ll n;cin>>n;
  //auto g=readGraph<int>(n,n-1);
  Graph<int>g(n);rep(i,1,n)g[i/2].EB(i);
  //Graph<int>g(n);rep(i,1,n)g[0].EB(i);
  Comb comb(2*n+5);
  using NTT=NumberTheoreticTransformFriendlyModInt<modint>;
  auto dfs=[&](auto &&f,int v,int par)->pair<vector<vector<modint>>,vector<vector<modint>>> {
    auto dp0=vec(1,2,modint(0));
    auto dpc=vec(1,2,modint(0));
    dp0[0][0]=1;
    dpc[0][1]=1;
    for(auto to:g[v]){
      if(to==par)continue;
      auto [t0,tc]=f(f,to,v);
      int dpsz=dp0[0].size(),tsz=t0[0].size();
      int dpcnt=dp0.size(),tcnt=tc.size();
      auto ndp0=vec(t0.size()+dp0.size(),dpsz+tsz-1,modint(0));
      auto ndpc=vec(tc.size()+dpc.size(),dpsz+tsz-1,modint(0));
      vector<modint>allt0(tsz);
      rep(i,0,t0.size()){
        rep(j,0,t0[i].size()){
          allt0[j]+=t0[i][j];
        }
      }
      auto under_fft=vector(t0.size()+1,vector<modint>());
      {
        auto under_tc=allt0;
        rep(i,0,t0.size()+1){
          under_fft[i]=NTT::ffted(under_tc,dpsz+tsz-1);
          if(i<t0.size())rep(j,0,tsz)under_tc[j]+=tc[i][j];
        }
      }
      auto over_fft=vector(t0.size()+1,vector<modint>());
      {
        auto over_tc=allt0;
        rep(i,0,t0.size()+1){
          over_fft[i]=NTT::ffted(over_tc,dpsz+tsz-1);
          if(i<t0.size())rep(j,0,tsz)over_tc[j]-=t0[i][j];
        }
      }
      //OUT(v,to,t0,tc);
      rep(i,0,dp0.size()){
        vector<modint>f(dpsz+tsz-1);
        auto overt0=allt0;
        auto under_tc=allt0;
        auto dpifft=NTT::ffted(dp0[i],dpsz+tsz-1);
        auto dpcfft=NTT::ffted(dpc[i],dpsz+tsz-1);
        rep(j,0,t0.size()+1){
          modint mult=comb.C(i+j,i)*comb.C(dpcnt+tcnt-i-1-j,tcnt-j);
          {
            //dp0*t0
            //OUT(dp0[j],allt0);
            auto f=NTT::multiply(dp0[i],under_tc,dpifft,under_fft[j]);
            rep(o,0,f.size())ndp0[i+j][o]+=f[o]*mult;
            if(j<t0.size())rep(o,0,tsz)under_tc[o]+=tc[j][o];
          }
          {
            //dpc*t0
            //OUT(overt0);
            auto f=NTT::multiply(dpc[i],overt0,dpcfft, over_fft[j]);
            rep(o,0,f.size())ndpc[i+j][o]+=f[o]*mult;
            if(j<t0.size())rep(o,0,tsz)overt0[o]-=t0[j][o];
          }
          //OUT(v,to,i,j,mult,ndp0,ndpc);
        }
      }
      dp0.swap(ndp0);
      dpc.swap(ndpc);
      int mxidx=0;
      rep(i,0,dp0.size()){
        rep(j,0,dp0[i].size()){
          if(dp0[i][j]!=0)chmax(mxidx,j);
          if(dpc[i][j]!=0)chmax(mxidx,j);
        }
      }
      rep(i,0,dp0.size()){
        dp0[i].resize(mxidx+1);//dp0[i].shrink_to_fit();
        dpc[i].resize(mxidx+1);//dpc[i].shrink_to_fit();
      }
      //OUT(v,to,dp0,dpc);
    }
    return {dp0,dpc};
  };
  auto [dp,dc]=dfs(dfs,0,-1);
  vector<modint>ret(n+1);
  rep(i,0,dp.size()){
    rep(j,0,dp[i].size()){
      ret[j]+=dp[i][j];
      ret[j]+=dc[i][j];
    }
  }
  rrep(i,0,n){
    rep(j,i+1,n+1){
      ret[i]-=ret[j]*comb.C(j,i);
    }
  }
  rep(i,1,n+1){
    cout<<ret[i]<<endl;
  }
  OUT(ret);
}

int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  int T = 1;
  //cin>>T;
  while(T--){
    solve();
  }
  return 0;
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3712kb

input:

5
1 2
1 3
2 4
2 5

output:

28
54
38
0
0

result:

ok 5 number(s): "28 54 38 0 0"

Test #2:

score: -100
Wrong Answer
time: 0ms
memory: 3712kb

input:

10
6 10
5 9
10 3
9 10
7 4
4 1
3 2
3 7
8 4

output:

26368
263648
868368
1253888
958288
258240
0
0
0
0

result:

wrong answer 1st numbers differ - expected: '11540', found: '26368'