QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#878425#9695. Trash Problemucup-team087#AC ✓962ms4352kbC++2325.9kb2025-02-01 15:15:192025-02-01 15:15:21

Judging History

This is the latest submission verdict.

  • [2025-02-01 15:15:21]
  • Judged
  • Verdict: AC
  • Time: 962ms
  • Memory: 4352kb
  • [2025-02-01 15:15:19]
  • Submitted

answer

#line 1 "library/my_template.hpp"
#if defined(LOCAL)
#include <my_template_compiled.hpp>
#else

// https://codeforces.com/blog/entry/96344
// https://codeforces.com/blog/entry/126772?#comment-1154880
#include <bits/allocator.h>
#pragma GCC optimize("Ofast,unroll-loops")
#pragma GCC target("avx2,popcnt")
#include <bits/stdc++.h>

using namespace std;

using ll = long long;
using u8 = uint8_t;
using u16 = uint16_t;
using u32 = uint32_t;
using u64 = uint64_t;
using i128 = __int128;
using u128 = unsigned __int128;
using f128 = __float128;

template <class T>
constexpr T infty = 0;
template <>
constexpr int infty<int> = 1'010'000'000;
template <>
constexpr ll infty<ll> = 2'020'000'000'000'000'000;
template <>
constexpr u32 infty<u32> = infty<int>;
template <>
constexpr u64 infty<u64> = infty<ll>;
template <>
constexpr i128 infty<i128> = i128(infty<ll>) * 2'000'000'000'000'000'000;
template <>
constexpr double infty<double> = infty<ll>;
template <>
constexpr long double infty<long double> = infty<ll>;

using pi = pair<ll, ll>;
using vi = vector<ll>;
template <class T>
using vc = vector<T>;
template <class T>
using vvc = vector<vc<T>>;
template <class T>
using vvvc = vector<vvc<T>>;
template <class T>
using vvvvc = vector<vvvc<T>>;
template <class T>
using vvvvvc = vector<vvvvc<T>>;
template <class T>
using pq = priority_queue<T>;
template <class T>
using pqg = priority_queue<T, vector<T>, greater<T>>;

#define vv(type, name, h, ...) vector<vector<type>> name(h, vector<type>(__VA_ARGS__))
#define vvv(type, name, h, w, ...) vector<vector<vector<type>>> name(h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))
#define vvvv(type, name, a, b, c, ...) \
  vector<vector<vector<vector<type>>>> name(a, vector<vector<vector<type>>>(b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))

// https://trap.jp/post/1224/
#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)
#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)
#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)
#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))
#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)
#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)
#define overload4(a, b, c, d, e, ...) e
#define overload3(a, b, c, d, ...) d
#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)
#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)

#define all(x) x.begin(), x.end()
#define len(x) ll(x.size())
#define elif else if

#define eb emplace_back
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second

#define stoi stoll

int popcnt(int x) { return __builtin_popcount(x); }
int popcnt(u32 x) { return __builtin_popcount(x); }
int popcnt(ll x) { return __builtin_popcountll(x); }
int popcnt(u64 x) { return __builtin_popcountll(x); }
int popcnt_sgn(int x) { return (__builtin_parity(unsigned(x)) & 1 ? -1 : 1); }
int popcnt_sgn(u32 x) { return (__builtin_parity(x) & 1 ? -1 : 1); }
int popcnt_sgn(ll x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
int popcnt_sgn(u64 x) { return (__builtin_parityll(x) & 1 ? -1 : 1); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)
int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
T kth_bit(int k) {
  return T(1) << k;
}
template <typename T>
bool has_kth_bit(T x, int k) {
  return x >> k & 1;
}

template <typename UINT>
struct all_bit {
  struct iter {
    UINT s;
    iter(UINT s) : s(s) {}
    int operator*() const { return lowbit(s); }
    iter &operator++() {
      s &= s - 1;
      return *this;
    }
    bool operator!=(const iter) const { return s != 0; }
  };
  UINT s;
  all_bit(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename UINT>
struct all_subset {
  static_assert(is_unsigned<UINT>::value);
  struct iter {
    UINT s, t;
    bool ed;
    iter(UINT s) : s(s), t(s), ed(0) {}
    int operator*() const { return s ^ t; }
    iter &operator++() {
      (t == 0 ? ed = 1 : t = (t - 1) & s);
      return *this;
    }
    bool operator!=(const iter) const { return !ed; }
  };
  UINT s;
  all_subset(UINT s) : s(s) {}
  iter begin() const { return iter(s); }
  iter end() const { return iter(0); }
};

template <typename T>
T floor(T a, T b) {
  return a / b - (a % b && (a ^ b) < 0);
}
template <typename T>
T ceil(T x, T y) {
  return floor(x + y - 1, y);
}
template <typename T>
T bmod(T x, T y) {
  return x - y * floor(x, y);
}
template <typename T>
pair<T, T> divmod(T x, T y) {
  T q = floor(x, y);
  return {q, x - q * y};
}

template <typename T, typename U>
T SUM(const vector<U> &A) {
  T sm = 0;
  for (auto &&a: A) sm += a;
  return sm;
}

#define MIN(v) *min_element(all(v))
#define MAX(v) *max_element(all(v))
#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))
#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))
#define UNIQUE(x) sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()

template <typename T>
T POP(deque<T> &que) {
  T a = que.front();
  que.pop_front();
  return a;
}
template <typename T>
T POP(pq<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(pqg<T> &que) {
  T a = que.top();
  que.pop();
  return a;
}
template <typename T>
T POP(vc<T> &que) {
  T a = que.back();
  que.pop_back();
  return a;
}

template <typename F>
ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {
  if (check_ok) assert(check(ok));
  while (abs(ok - ng) > 1) {
    auto x = (ng + ok) / 2;
    (check(x) ? ok : ng) = x;
  }
  return ok;
}
template <typename F>
double binary_search_real(F check, double ok, double ng, int iter = 100) {
  FOR(iter) {
    double x = (ok + ng) / 2;
    (check(x) ? ok : ng) = x;
  }
  return (ok + ng) / 2;
}

template <class T, class S>
inline bool chmax(T &a, const S &b) {
  return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
  return (a > b ? a = b, 1 : 0);
}

// ? は -1
vc<int> s_to_vi(const string &S, char first_char) {
  vc<int> A(S.size());
  FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }
  return A;
}

template <typename T, typename U>
vector<T> cumsum(vector<U> &A, int off = 1) {
  int N = A.size();
  vector<T> B(N + 1);
  FOR(i, N) { B[i + 1] = B[i] + A[i]; }
  if (off == 0) B.erase(B.begin());
  return B;
}

// stable sort
template <typename T>
vector<int> argsort(const vector<T> &A) {
  vector<int> ids(len(A));
  iota(all(ids), 0);
  sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });
  return ids;
}

// A[I[0]], A[I[1]], ...
template <typename T>
vc<T> rearrange(const vc<T> &A, const vc<int> &I) {
  vc<T> B(len(I));
  FOR(i, len(I)) B[i] = A[I[i]];
  return B;
}

template <typename T, typename... Vectors>
void concat(vc<T> &first, const Vectors &... others) {
  vc<T> &res = first;
  (res.insert(res.end(), others.begin(), others.end()), ...);
}
#endif
#line 1 "library/other/io.hpp"
#define FASTIO
#include <unistd.h>

// https://judge.yosupo.jp/submission/21623
namespace fastio {
static constexpr uint32_t SZ = 1 << 17;
char ibuf[SZ];
char obuf[SZ];
char out[100];
// pointer of ibuf, obuf
uint32_t pil = 0, pir = 0, por = 0;

struct Pre {
  char num[10000][4];
  constexpr Pre() : num() {
    for (int i = 0; i < 10000; i++) {
      int n = i;
      for (int j = 3; j >= 0; j--) {
        num[i][j] = n % 10 | '0';
        n /= 10;
      }
    }
  }
} constexpr pre;

inline void load() {
  memcpy(ibuf, ibuf + pil, pir - pil);
  pir = pir - pil + fread(ibuf + pir - pil, 1, SZ - pir + pil, stdin);
  pil = 0;
  if (pir < SZ) ibuf[pir++] = '\n';
}

inline void flush() {
  fwrite(obuf, 1, por, stdout);
  por = 0;
}

void rd(char &c) {
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
}

void rd(string &x) {
  x.clear();
  char c;
  do {
    if (pil + 1 > pir) load();
    c = ibuf[pil++];
  } while (isspace(c));
  do {
    x += c;
    if (pil == pir) load();
    c = ibuf[pil++];
  } while (!isspace(c));
}

template <typename T>
void rd_real(T &x) {
  string s;
  rd(s);
  x = stod(s);
}

template <typename T>
void rd_integer(T &x) {
  if (pil + 100 > pir) load();
  char c;
  do
    c = ibuf[pil++];
  while (c < '-');
  bool minus = 0;
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (c == '-') { minus = 1, c = ibuf[pil++]; }
  }
  x = 0;
  while ('0' <= c) { x = x * 10 + (c & 15), c = ibuf[pil++]; }
  if constexpr (is_signed<T>::value || is_same_v<T, i128>) {
    if (minus) x = -x;
  }
}

void rd(int &x) { rd_integer(x); }
void rd(ll &x) { rd_integer(x); }
void rd(i128 &x) { rd_integer(x); }
void rd(u32 &x) { rd_integer(x); }
void rd(u64 &x) { rd_integer(x); }
void rd(u128 &x) { rd_integer(x); }
void rd(double &x) { rd_real(x); }
void rd(long double &x) { rd_real(x); }
void rd(f128 &x) { rd_real(x); }

template <class T, class U>
void rd(pair<T, U> &p) {
  return rd(p.first), rd(p.second);
}
template <size_t N = 0, typename T>
void rd_tuple(T &t) {
  if constexpr (N < std::tuple_size<T>::value) {
    auto &x = std::get<N>(t);
    rd(x);
    rd_tuple<N + 1>(t);
  }
}
template <class... T>
void rd(tuple<T...> &tpl) {
  rd_tuple(tpl);
}

template <size_t N = 0, typename T>
void rd(array<T, N> &x) {
  for (auto &d: x) rd(d);
}
template <class T>
void rd(vc<T> &x) {
  for (auto &d: x) rd(d);
}

void read() {}
template <class H, class... T>
void read(H &h, T &... t) {
  rd(h), read(t...);
}

void wt(const char c) {
  if (por == SZ) flush();
  obuf[por++] = c;
}
void wt(const string s) {
  for (char c: s) wt(c);
}
void wt(const char *s) {
  size_t len = strlen(s);
  for (size_t i = 0; i < len; i++) wt(s[i]);
}

template <typename T>
void wt_integer(T x) {
  if (por > SZ - 100) flush();
  if (x < 0) { obuf[por++] = '-', x = -x; }
  int outi;
  for (outi = 96; x >= 10000; outi -= 4) {
    memcpy(out + outi, pre.num[x % 10000], 4);
    x /= 10000;
  }
  if (x >= 1000) {
    memcpy(obuf + por, pre.num[x], 4);
    por += 4;
  } else if (x >= 100) {
    memcpy(obuf + por, pre.num[x] + 1, 3);
    por += 3;
  } else if (x >= 10) {
    int q = (x * 103) >> 10;
    obuf[por] = q | '0';
    obuf[por + 1] = (x - q * 10) | '0';
    por += 2;
  } else
    obuf[por++] = x | '0';
  memcpy(obuf + por, out + outi + 4, 96 - outi);
  por += 96 - outi;
}

template <typename T>
void wt_real(T x) {
  ostringstream oss;
  oss << fixed << setprecision(15) << double(x);
  string s = oss.str();
  wt(s);
}

void wt(int x) { wt_integer(x); }
void wt(ll x) { wt_integer(x); }
void wt(i128 x) { wt_integer(x); }
void wt(u32 x) { wt_integer(x); }
void wt(u64 x) { wt_integer(x); }
void wt(u128 x) { wt_integer(x); }
void wt(double x) { wt_real(x); }
void wt(long double x) { wt_real(x); }
void wt(f128 x) { wt_real(x); }

template <class T, class U>
void wt(const pair<T, U> val) {
  wt(val.first);
  wt(' ');
  wt(val.second);
}
template <size_t N = 0, typename T>
void wt_tuple(const T t) {
  if constexpr (N < std::tuple_size<T>::value) {
    if constexpr (N > 0) { wt(' '); }
    const auto x = std::get<N>(t);
    wt(x);
    wt_tuple<N + 1>(t);
  }
}
template <class... T>
void wt(tuple<T...> tpl) {
  wt_tuple(tpl);
}
template <class T, size_t S>
void wt(const array<T, S> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}
template <class T>
void wt(const vector<T> val) {
  auto n = val.size();
  for (size_t i = 0; i < n; i++) {
    if (i) wt(' ');
    wt(val[i]);
  }
}

void print() { wt('\n'); }
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
  wt(head);
  if (sizeof...(Tail)) wt(' ');
  print(forward<Tail>(tail)...);
}

// gcc expansion. called automaticall after main.
void __attribute__((destructor)) _d() { flush(); }
} // namespace fastio
using fastio::read;
using fastio::print;
using fastio::flush;

#if defined(LOCAL)
#define SHOW(...) SHOW_IMPL(__VA_ARGS__, SHOW6, SHOW5, SHOW4, SHOW3, SHOW2, SHOW1)(__VA_ARGS__)
#define SHOW_IMPL(_1, _2, _3, _4, _5, _6, NAME, ...) NAME
#define SHOW1(x) print(#x, "=", (x)), flush()
#define SHOW2(x, y) print(#x, "=", (x), #y, "=", (y)), flush()
#define SHOW3(x, y, z) print(#x, "=", (x), #y, "=", (y), #z, "=", (z)), flush()
#define SHOW4(x, y, z, w) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w)), flush()
#define SHOW5(x, y, z, w, v) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v)), flush()
#define SHOW6(x, y, z, w, v, u) print(#x, "=", (x), #y, "=", (y), #z, "=", (z), #w, "=", (w), #v, "=", (v), #u, "=", (u)), flush()
#else
#define SHOW(...)
#endif

#define INT(...)   \
  int __VA_ARGS__; \
  read(__VA_ARGS__)
#define LL(...)   \
  ll __VA_ARGS__; \
  read(__VA_ARGS__)
#define U32(...)   \
  u32 __VA_ARGS__; \
  read(__VA_ARGS__)
#define U64(...)   \
  u64 __VA_ARGS__; \
  read(__VA_ARGS__)
#define STR(...)      \
  string __VA_ARGS__; \
  read(__VA_ARGS__)
#define CHAR(...)   \
  char __VA_ARGS__; \
  read(__VA_ARGS__)
#define DBL(...)      \
  double __VA_ARGS__; \
  read(__VA_ARGS__)

#define VEC(type, name, size) \
  vector<type> name(size);    \
  read(name)
#define VV(type, name, h, w)                     \
  vector<vector<type>> name(h, vector<type>(w)); \
  read(name)

void YES(bool t = 1) { print(t ? "YES" : "NO"); }
void NO(bool t = 1) { YES(!t); }
void Yes(bool t = 1) { print(t ? "Yes" : "No"); }
void No(bool t = 1) { Yes(!t); }
void yes(bool t = 1) { print(t ? "yes" : "no"); }
void no(bool t = 1) { yes(!t); }
void YA(bool t = 1) { print(t ? "YA" : "TIDAK"); }
void TIDAK(bool t = 1) { YES(!t); }
#line 3 "main.cpp"

#line 2 "library/ds/my_bitset.hpp"

// https://codeforces.com/contest/914/problem/F
// https://yukicoder.me/problems/no/142
// わずかに普通の bitset より遅いときもあるようだが,
// 固定長にしたくないときや slice 操作が必要なときに使う
struct My_Bitset {
  using T = My_Bitset;
  int N;
  vc<u64> dat;

  // x で埋める
  My_Bitset(int N = 0, int x = 0) : N(N) {
    assert(x == 0 || x == 1);
    u64 v = (x == 0 ? 0 : -1);
    dat.assign((N + 63) >> 6, v);
    if (N) dat.back() >>= (64 * len(dat) - N);
  }

  int size() { return N; }

  void resize(int size) {
    dat.resize((size + 63) >> 6);
    int remainingBits = size & 63;
    if (remainingBits != 0) {
      u64 mask = (u64(1) << remainingBits) - 1;
      dat.back() &= mask;
    }
    N = size;
  }

  void append(int idx, bool b) {
    assert(N == idx);
    resize(idx + 1), (*this)[idx] = b;
  }

  static T from_string(string &S) {
    int N = len(S);
    T ANS(N);
    FOR(i, N) ANS[i] = (S[i] == '1');
    return ANS;
  }

  // thanks to chatgpt!
  class Proxy {
  public:
    Proxy(vc<u64> &d, int i) : dat(d), index(i) {}
    operator bool() const { return (dat[index >> 6] >> (index & 63)) & 1; }

    Proxy &operator=(u64 value) {
      dat[index >> 6] &= ~(u64(1) << (index & 63));
      dat[index >> 6] |= (value & 1) << (index & 63);
      return *this;
    }
    void flip() {
      dat[index >> 6] ^= (u64(1) << (index & 63)); // XOR to flip the bit
    }

  private:
    vc<u64> &dat;
    int index;
  };

  Proxy operator[](int i) { return Proxy(dat, i); }

  bool operator==(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) if (dat[i] != p.dat[i]) return false;
    return true;
  }

  T &operator&=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] &= p.dat[i];
    return *this;
  }
  T &operator|=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] |= p.dat[i];
    return *this;
  }
  T &operator^=(const T &p) {
    assert(N == p.N);
    FOR(i, len(dat)) dat[i] ^= p.dat[i];
    return *this;
  }
  T operator&(const T &p) const { return T(*this) &= p; }
  T operator|(const T &p) const { return T(*this) |= p; }
  T operator^(const T &p) const { return T(*this) ^= p; }
  T operator~() const {
    T p = (*this);
    p.flip_range(0, N);
    return p;
  }

  void set_minus_inplace(T &other) {
    assert(N == other.N);
    FOR(i, len(dat)) dat[i] = dat[i] & (~other.dat[i]);
  }

  T set_minus(T other) {
    assert(N == other.N);
    FOR(i, len(dat)) other.dat[i] = dat[i] & (~other.dat[i]);
    return other;
  }

  int count() {
    int ans = 0;
    for (u64 val: dat) ans += popcnt(val);
    return ans;
  }

  int dot(T &p) {
    assert(N == p.N);
    int ans = 0;
    FOR(i, len(dat)) ans += popcnt(dat[i] & p.dat[i]);
    return ans;
  }

  int next(int i) {
    chmax(i, 0);
    if (i >= N) return N;
    int k = i >> 6;
    {
      u64 x = dat[k];
      int s = i & 63;
      x = (x >> s) << s;
      if (x) return (k << 6) | lowbit(x);
    }
    FOR(idx, k + 1, len(dat)) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | lowbit(dat[idx]);
    }
    return N;
  }

  int prev(int i) {
    chmin(i, N - 1);
    if (i <= -1) return -1;
    int k = i >> 6;
    if ((i & 63) < 63) {
      u64 x = dat[k];
      x &= (u64(1) << ((i & 63) + 1)) - 1;
      if (x) return (k << 6) | topbit(x);
      --k;
    }
    FOR_R(idx, k + 1) {
      if (dat[idx] == 0) continue;
      return (idx << 6) | topbit(dat[idx]);
    }
    return -1;
  }

  My_Bitset range(int L, int R) {
    assert(L <= R);
    My_Bitset p(R - L);
    int rm = (R - L) & 63;
    FOR(rm) {
      p[R - L - 1] = bool((*this)[R - 1]);
      --R;
    }
    int n = (R - L) >> 6;
    int hi = L & 63;
    int lo = 64 - hi;
    int s = L >> 6;
    if (hi == 0) {
      FOR(i, n) { p.dat[i] ^= dat[s + i]; }
    } else {
      FOR(i, n) { p.dat[i] ^= (dat[s + i] >> hi) ^ (dat[s + i + 1] << lo); }
    }
    return p;
  }

  My_Bitset slice(int L, int R) { return range(L, R); }

  int count_range(int L, int R) {
    assert(L <= R);
    int cnt = 0;
    while ((L < R) && (L & 63)) cnt += (*this)[L++];
    while ((L < R) && (R & 63)) cnt += (*this)[--R];
    int l = L >> 6, r = R >> 6;
    FOR(i, l, r) cnt += popcnt(dat[i]);
    return cnt;
  }

  // [L,R) に p を代入
  void assign_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) { (*this)[L++] = bool(p[a++]); }
    while (L < R && (R & 63)) { (*this)[--R] = bool(p[--b]); }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] = p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] = (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を xor
  void xor_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] ^= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] ^= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] ^= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] ^= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を xor する
  void xor_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] ^= p.dat[k]; }
  }

  // [L,R) に p を and
  void and_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      if (!p[a]) (*this)[L] = 0;
      a++, L++;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      if (!p[b]) (*this)[R] = 0;
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] &= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] &= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }

  // [L,R) に p を or
  void or_to_range(int L, int R, My_Bitset &p) {
    assert(p.N == R - L);
    int a = 0, b = p.N;
    while (L < R && (L & 63)) {
      dat[L >> 6] |= u64(p[a]) << (L & 63);
      ++a, ++L;
    }
    while (L < R && (R & 63)) {
      --b, --R;
      dat[R >> 6] |= u64(p[b]) << (R & 63);
    }
    // p[a:b] を [L:R] に
    int l = L >> 6, r = R >> 6;
    int s = a >> 6, t = b >> t;
    int n = r - l;
    if (!(a & 63)) {
      FOR(i, n) dat[l + i] |= p.dat[s + i];
    } else {
      int hi = a & 63;
      int lo = 64 - hi;
      FOR(i, n) dat[l + i] |= (p.dat[s + i] >> hi) | (p.dat[1 + s + i] << lo);
    }
  }
  // 行列基本変形で使うやつ
  // p は [i:N) にしかないとして p を or する
  void or_suffix(int i, My_Bitset &p) {
    assert(N == p.N && 0 <= i && i < N);
    FOR(k, i / 64, len(dat)) { dat[k] |= p.dat[k]; }
  }

  // [L,R) を 1 に変更
  void set_range(int L, int R) {
    while (L < R && (L & 63)) { set(L++); }
    while (L < R && (R & 63)) { set(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(-1);
  }

  // [L,R) を 1 に変更
  void reset_range(int L, int R) {
    while (L < R && (L & 63)) { reset(L++); }
    while (L < R && (R & 63)) { reset(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] = u64(0);
  }

  // [L,R) を flip
  void flip_range(int L, int R) {
    while (L < R && (L & 63)) { flip(L++); }
    while (L < R && (R & 63)) { flip(--R); }
    FOR(i, L >> 6, R >> 6) dat[i] ^= u64(-1);
  }

  // bitset に仕様を合わせる
  void set(int i) { (*this)[i] = 1; }
  void reset(int i) { (*this)[i] = 0; }
  void flip(int i) { (*this)[i].flip(); }
  void set() {
    fill(all(dat), u64(-1));
    resize(N);
  }
  void reset() { fill(all(dat), 0); }
  void flip() {
    FOR(i, len(dat) - 1) { dat[i] = u64(-1) ^ dat[i]; }
    int i = len(dat) - 1;
    FOR(k, 64) {
      if (64 * i + k >= size()) break;
      flip(64 * i + k);
    }
  }
  bool any() {
    FOR(i, len(dat)) {
      if (dat[i]) return true;
    }
    return false;
  }

  bool ALL() {
    dat.resize((N + 63) >> 6);
    int r = N & 63;
    if (r != 0) {
      u64 mask = (u64(1) << r) - 1;
      if (dat.back() != mask) return 0;
    }
    for (int i = 0; i < N / 64; ++i)
      if (dat[i] != u64(-1)) return false;
    return true;
  }
  // bs[i]==true であるような i 全体
  vc<int> collect_idx() {
    vc<int> I;
    FOR(i, N) if ((*this)[i]) I.eb(i);
    return I;
  }

  bool is_subset(T &other) {
    assert(len(other) == N);
    FOR(i, len(dat)) {
      u64 a = dat[i], b = other.dat[i];
      if ((a & b) != a) return false;
    }
    return true;
  }

  int _Find_first() { return next(0); }
  int _Find_next(int p) { return next(p + 1); }

  static string TO_STR[256];
  string to_string() const {
    if (TO_STR[0].empty()) precompute();
    string S;
    for (auto &x: dat) { FOR(i, 8) S += TO_STR[(x >> (8 * i) & 255)]; }
    S.resize(N);
    return S;
  }

  static void precompute() {
    FOR(s, 256) {
      string x;
      FOR(i, 8) x += '0' + (s >> i & 1);
      TO_STR[s] = x;
    }
  }
};
string My_Bitset::TO_STR[256];
#line 5 "main.cpp"

// 左端を決めて解く
ll sub(vc<string> G) {
  ll H = len(G), W = len(G[0]);
  using BS = My_Bitset;
  // L, R, x などを割り当てる
  vc<string> LR(H, string(W, '.'));
  FOR(i, H) {
    FOR(j, W) {
      if (LR[i][j] == 'R') continue;
      if (G[i][j] == '0') continue;
      if (j + 1 < W && G[i][j + 1] == '1') {
        LR[i][j] = 'L';
        LR[i][j + 1] = 'R';
      } else {
        LR[i][j] = 'X';
      }
    }
  }

  auto from_char = [&](char ch) -> vc<BS> {
    vc<BS> ANS(H, BS(W));
    FOR(i, H) FOR(j, W) ANS[i][j] = (LR[i][j] == ch);
    return ANS;
  };

  auto L = from_char('L');
  auto R = from_char('R');
  auto X = from_char('X');
  vc<int> FIRST_X(H, W);
  FOR(i, H) FOR(j, W) {
    if (LR[i][j] == 'X') chmin(FIRST_X[i], j);
  }
  SHOW(W, FIRST_X);
  FOR(i, H) SHOW(X[i].to_string());

  // 各行に対して、LR 境界となるところの L は bad
  vc<BS> not_L(H);
  FOR(i, H) {
    not_L[i] = L[i];
    not_L[i].flip();
  }

  ll ANS = 0;
  // 上端を決めて解く
  FOR(s, H) {
    // 各列が最後の列になってもよいかどうかの bitset
    BS OK(W, 1);
    // 最後の行が L になっているところの bitset
    BS last(W, 0);
    int n = W;
    FOR(t, s, H) {
      chmin(n, FIRST_X[t]);

      // 新たに悪い「最後の列」が発生
      OK &= not_L[t];
      // last のところのあとに L 以外がくるとそこ以降は使えない
      chmin(n, (last & not_L[t]).next(0));
      last ^= L[t];
      int k = min(n, last.next(0));
      ANS += OK.count_range(0, k);
    }
  }
  return ANS;
}

void solve() {
  LL(N);
  VEC(string, G, N);

  ll ANS = 0;
  FOR(j, N) {
    vc<string> H(N);
    FOR(i, N) H[i] = G[i].substr(j);
    ANS += sub(H);
  }
  print(ANS);
}

signed main() { solve(); }

这程序好像有点Bug,我给组数据试试?

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 0ms
memory: 3584kb

input:

4
0110
0110
1111
1111

output:

17

result:

ok 1 number(s): "17"

Test #2:

score: 0
Accepted
time: 1ms
memory: 3712kb

input:

20
00110101100010111111
01000101010001111000
11101001001011011010
01000001001001101110
11100011001111111100
01101110111100111100
10000101011110110101
10001001101110000110
11110011110001110010
10001000101101011111
01000010001100110101
00111100100010011010
01000011000111011011
00111010111111010101
000...

output:

549

result:

ok 1 number(s): "549"

Test #3:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

20
01110011110110000110
10110000111010001100
01111100000001001010
11011111110110011001
01111001001010010111
00111001110110010001
01101011100101011111
10100001100011110001
00101111101011000011
11011011010110101001
01010011011110000111
11111100111100010110
00110111111010011111
00000011000100111011
011...

output:

591

result:

ok 1 number(s): "591"

Test #4:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

19
1000101101010111010
0001001000101010101
1101111101111110010
0100101100110101010
1111011000111010000
1010000111101101110
0001111010100011010
0011010011011111110
1110111011001001000
0001011010111111010
1010101100000110101
1000000011000111101
1101000011101001001
0011000100011110010
11100010000101001...

output:

558

result:

ok 1 number(s): "558"

Test #5:

score: 0
Accepted
time: 1ms
memory: 3712kb

input:

20
11011001111000000000
11011111111001100000
01111111101101101100
01111001101100111111
11000000011110110011
11000000011110001111
00011000111100111111
00011011111100110011
00011011011110011011
00011011011110011110
11110011110011000110
11110011110011011000
00001111011110011011
00111101111110111111
001...

output:

1629

result:

ok 1 number(s): "1629"

Test #6:

score: 0
Accepted
time: 1ms
memory: 3712kb

input:

20
00011000000001100011
00011110110111101111
11110110110111101100
11110011011111111000
01111011011110011000
01111000111100110000
01111000111100110000
01111011001101101100
11110011001101101100
11111100111101111110
00001111111101111110
00110011110000001100
00110011110111101100
01111011011111111110
011...

output:

1687

result:

ok 1 number(s): "1687"

Test #7:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

20
01100000000000000000
01100000000000000000
00000000011000000000
00011000011110000000
00011001100110000000
00000001100000000000
00000000110000110000
00000000110000111100
00000000110001101100
11000000110001100000
11001100110000000000
00001100110000000011
00000000000000000011
00000000000000000110
110...

output:

11708

result:

ok 1 number(s): "11708"

Test #8:

score: 0
Accepted
time: 1ms
memory: 3712kb

input:

20
00000000000000011000
00000000000000011000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00011000110001101100
00011000110001101100
00000000000000000000
00000000000000110000
00001100011000110110
00001100011000000110
00000110011000000011
000...

output:

15512

result:

ok 1 number(s): "15512"

Test #9:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

20
11001111000000000011
11001111000000000011
11110000001111110000
11110000001111110000
00000000001100110000
00000000001100110000
00000000000000000000
00000000000000000000
00110000000000001100
00110000000000001100
11000000001100000000
11000000001100000000
11000011000000000000
11000011000000000000
000...

output:

13034

result:

ok 1 number(s): "13034"

Test #10:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

20
00001100000000000000
00001100000000000000
00110011110011000000
00110011110011000000
11110000000000000000
11110000000000000000
11000000000000111100
11000000000000111100
11111100110000000000
11111100110000000000
00110000111111110011
00110000111111110011
00110011000000000000
00110011000000000000
000...

output:

9380

result:

ok 1 number(s): "9380"

Test #11:

score: 0
Accepted
time: 0ms
memory: 3712kb

input:

20
00110000000000000011
00110000000000000011
00000000000011001111
00000000000011001111
00110011000000111111
00110011000000111111
00001100110011110000
00001100110011110000
00001100001111000000
00001100001111000000
00110000001100000000
00110000001100000000
11000011110011000000
11000011110011000000
000...

output:

9048

result:

ok 1 number(s): "9048"

Test #12:

score: 0
Accepted
time: 0ms
memory: 3584kb

input:

20
00000011000000000000
00000011000000000000
00111111001111110011
00111111001111110011
11111100110000001100
11111100110000001100
11001100110000001100
11001100110000001100
11110000001100001100
11110000001100001100
00110000001100000000
00110000001100000000
00000000000011001100
00000000000011001100
000...

output:

9302

result:

ok 1 number(s): "9302"

Test #13:

score: 0
Accepted
time: 3ms
memory: 3584kb

input:

50
10110111111100111011110100110011011100011001010010
01101010010001101000110010101100011110101001011000
00011110101010110011100010101111111001010111101100
01010100110110111000100111110001111011111101010001
01010110110011010100110010100101001110110100111001
100011010011001011101000011110101001100111...

output:

4062

result:

ok 1 number(s): "4062"

Test #14:

score: 0
Accepted
time: 4ms
memory: 3712kb

input:

50
00000100101011100101110000000010000011011001100111
00111101010010100011011000010101101110011010111100
01110111001011001111001001010010110001000101100101
10111000100000000001011110101101001011000010111011
10111100111010111100010101001110101101101011011110
111110000110100001100001001111110011001001...

output:

4693

result:

ok 1 number(s): "4693"

Test #15:

score: 0
Accepted
time: 4ms
memory: 3712kb

input:

49
0000100110001000101010000110110000110110010001100
1011110001010000010011001110010000100101100011001
0000001000011111100001110111111100100100110110100
1010011111110000011100100000110001001001100011001
1100110001100011111010100110010111001100010110001
10011010111110001110011010100011010000110111011...

output:

4104

result:

ok 1 number(s): "4104"

Test #16:

score: 0
Accepted
time: 4ms
memory: 3712kb

input:

50
00000011000110110000011001111110110000000000000000
11000011000110111101111001111110110001111110111111
11000011000001101101111110011110011001111110111111
01111011000001100110011111111110011111101100011110
01111110001100110110000001100001111111101101111110
110111100011111100001111001100011110000011...

output:

11480

result:

ok 1 number(s): "11480"

Test #17:

score: 0
Accepted
time: 5ms
memory: 3712kb

input:

50
00011110000111111111111000000000000000000000000110
11011110011111111111111111100110111101111110000110
11001100011000110000011111100110111101111110000000
11001111110011111100011111100011111101100000001111
11110011111111001100000111111011111101101100001111
111100000011000001100110110110000001111011...

output:

12511

result:

ok 1 number(s): "12511"

Test #18:

score: 0
Accepted
time: 4ms
memory: 3712kb

input:

50
00000000000000000000000000000000001100000000000000
00000000011001100000000000000000001100000000000000
00000000011001100000000000000000000000000110000011
00000000000000000000000000000000011001100110000011
00000000000000000011000000000000011001100000000000
000000000000000000110000000000000000000000...

output:

517453

result:

ok 1 number(s): "517453"

Test #19:

score: 0
Accepted
time: 5ms
memory: 3584kb

input:

50
00000000000000000000000000000000000000000000011000
00000000000000000000000000000000000000000000011000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000
000000000000110000000000000000000000000000...

output:

510978

result:

ok 1 number(s): "510978"

Test #20:

score: 0
Accepted
time: 4ms
memory: 3712kb

input:

50
00001100000011000000110011001111001100001100000011
00001100000011000000110011001111001100001100000011
11000011000000001100000000000011110000000000001100
11000011000000001100000000000011110000000000001100
00110000000000000000110000000011000000110011000000
001100000000000000001100000000110000001100...

output:

195043

result:

ok 1 number(s): "195043"

Test #21:

score: 0
Accepted
time: 5ms
memory: 3712kb

input:

50
00111100000000000000110000001100001100000011001100
00111100000000000000110000001100001100000011001100
11000000001100000000001111001111000011000000110000
11000000001100000000001111001111000011000000110000
00110000000000000000000000000000110000001100000000
001100000000000000000000000000001100000011...

output:

200866

result:

ok 1 number(s): "200866"

Test #22:

score: 0
Accepted
time: 5ms
memory: 3712kb

input:

50
00000000000000000000000000000000000000000011000011
00000000000000000000000000000000000000000011000011
00000000000000000000000000000000110000001100001100
00000000000000000000000000000000110000001100001100
00000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000...

output:

411379

result:

ok 1 number(s): "411379"

Test #23:

score: 0
Accepted
time: 5ms
memory: 3712kb

input:

50
00000000000000110000110000000000001100110000000000
00000000000000110000110000000000001100110000000000
00000000110000000000000011000000000000000000000011
00000000110000000000000011000000000000000000000011
00000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000...

output:

378461

result:

ok 1 number(s): "378461"

Test #24:

score: 0
Accepted
time: 739ms
memory: 4352kb

input:

300
00000000100001101110110010111001010000000101000011011100101110110110100000111110000011000100010111100000101110011011100000000011000001000000111010001110001110110111110011111000000010101111101110000001011101110111010101110001000011100110101010101101001111010011111010100111000100100010001011100010...

output:

158766

result:

ok 1 number(s): "158766"

Test #25:

score: 0
Accepted
time: 732ms
memory: 4224kb

input:

300
01010100101011010011010101111101010100001101101111011011010100111101111101100110110111011000011110010111010111100011110111000100101010010100000101010001011101100000100001011010010000000110111010001101010100110100110110101110001000010011010011111101110001101010101001011011001010101010001100100110...

output:

161123

result:

ok 1 number(s): "161123"

Test #26:

score: 0
Accepted
time: 729ms
memory: 4224kb

input:

300
01001011111100110011101011101100110101011101110111010110111100101000100110100000101011101000101001101011101001110110111110001111011010010011110001010011001011101000011001100111001000001001011010010000101010001001000010010011011000110101010001000000010111011010101010010101000011101101111011101100...

output:

161636

result:

ok 1 number(s): "161636"

Test #27:

score: 0
Accepted
time: 729ms
memory: 4224kb

input:

300
01000110110010010110111000101100110110000000010100111101010111111100001111001010111010011110000111110010000001011111010011001011000010101110101110000110011111100111101001100101100100101110100110110110101011001001001110100101001010001110010010010110011011000110010100101000011011111110101110000110...

output:

163637

result:

ok 1 number(s): "163637"

Test #28:

score: 0
Accepted
time: 719ms
memory: 4352kb

input:

299
11000011001101101010000001111010111111101010101000000111101010011111000001011010100000000001001000100110111011010000111000001111111011010001111101111110101100100010101011111101010011011110000010011101010101101000100011101110011001111101000010000101010011101011100110001000101100011010001010010100...

output:

160948

result:

ok 1 number(s): "160948"

Test #29:

score: 0
Accepted
time: 730ms
memory: 4352kb

input:

300
00110010011001001001110011010011101111011011101000100010010010101001011010110001100101010111001110110010000000101110101111100000011110111000010100010000110000010101100011110100001001010100101100100001100000000010001000101001100001110101101011111010000101111101110010001100001110111100110111000010...

output:

159274

result:

ok 1 number(s): "159274"

Test #30:

score: 0
Accepted
time: 725ms
memory: 4352kb

input:

300
10111110101111011010001001000001001100011101101001110010001101110011110101000100000100111101010110000001111100100110110010001011111110011111011010110101011001010100010111101001001001111110100000100011110111010101011111100010011001001100000111110000100101010010011111111011101111000011101001000000...

output:

163578

result:

ok 1 number(s): "163578"

Test #31:

score: 0
Accepted
time: 721ms
memory: 4352kb

input:

299
11110011011010010001000111011001111111010010101110001111001111101100110010011101101001001011001100111111100000100011001101001010010111000101011101011000101100101111110001011110110110010000010111111001011010101101001011101101110100111101010001100000101111100110010000011010100101100100001010101010...

output:

157983

result:

ok 1 number(s): "157983"

Test #32:

score: 0
Accepted
time: 692ms
memory: 4352kb

input:

300
00000001100110001100000000011111100000000011001111110000111111000000011000000000000001100001101111001100110001101111011000000011000001111011000000000110000000001100000000000011000000000000110001111000000000001101100000000001101101100001111000000011001100011011011110000001100001100110001111000001...

output:

427604

result:

ok 1 number(s): "427604"

Test #33:

score: 0
Accepted
time: 699ms
memory: 4352kb

input:

300
11011110011011000001100110110000000011000110000000110000000000001100110011110000111100011000000000000110011001100110000000000001100011011011000110110001101100011011000011000110001111000011110011110111111000000011000011000000000110000000000001100000000000000110000000001111011110001111110000001111...

output:

429036

result:

ok 1 number(s): "429036"

Test #34:

score: 0
Accepted
time: 940ms
memory: 4352kb

input:

300
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

631185707

result:

ok 1 number(s): "631185707"

Test #35:

score: 0
Accepted
time: 946ms
memory: 4224kb

input:

300
00000000000000000000000000000000000000000000000000000000000011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

640299883

result:

ok 1 number(s): "640299883"

Test #36:

score: 0
Accepted
time: 778ms
memory: 4352kb

input:

300
11001100110000000000110011000000000011000000000000111100111111000000111100000000000000000000110011000011110011000000001100000011001111111111000011111100000011000000111100000011000011000000001100110011000011001100001111001111000000000000000011001100111100000011000000000011110011110011000000111111...

output:

145347042

result:

ok 1 number(s): "145347042"

Test #37:

score: 0
Accepted
time: 766ms
memory: 4352kb

input:

300
00000011000000001100000011001100111111000011000011000011001100111100001100000000110011000000000000000000001111000011110000000000000000110000000000110000111100000000000000000000001100111111001100111111001100111111000011000011000000000000001100001111001111111111000011001100000000110000110011001100...

output:

145414743

result:

ok 1 number(s): "145414743"

Test #38:

score: 0
Accepted
time: 909ms
memory: 4352kb

input:

300
00001100000000000000000000000000000000000000000000000000110000000000000000000000000000000000000000000000000000000011000000000000000000000000000000000000000000000000000000000000000000000011000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

476563330

result:

ok 1 number(s): "476563330"

Test #39:

score: 0
Accepted
time: 911ms
memory: 4352kb

input:

300
00000000000000000000000000000000000011000000000000000000000000000000001100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000011000000000000000011000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

491622899

result:

ok 1 number(s): "491622899"

Test #40:

score: 0
Accepted
time: 962ms
memory: 4352kb

input:

300
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000...

output:

2038522500

result:

ok 1 number(s): "2038522500"

Test #41:

score: 0
Accepted
time: 817ms
memory: 4224kb

input:

300
11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111...

output:

506250000

result:

ok 1 number(s): "506250000"

Extra Test:

score: 0
Extra Test Passed