QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#874892 | #9738. Make It Divisible | wly09 | TL | 0ms | 3584kb | C++20 | 6.3kb | 2025-01-28 19:17:54 | 2025-01-28 19:17:55 |
Judging History
answer
#pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
using namespace std;
#define MYBUF (1 << 20)
char buf[MYBUF], *p1, *p2;
#define gc() \
(p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, MYBUF, stdin), p1 == p2) \
? EOF \
: *p1++)
inline int64_t rd() {
int64_t x = 0;
char c = gc();
while (c < '0' || c > '9')
c = gc();
for (; c >= '0' && c <= '9'; c = gc())
x = x * 10 + (c ^ '0');
return x;
}
char pbuf[MYBUF], *pp = pbuf;
inline void pc(const char &c) {
if (pp - pbuf == MYBUF)
fwrite(pbuf, 1, MYBUF, stdout), pp = pbuf;
*pp++ = c;
}
inline void wt(int64_t x) {
static int sta[35];
int top = 0;
do {
sta[top++] = x % 10, x /= 10;
} while (x);
while (top)
pc(sta[--top] + '0');
}
#undef MYBUF
static minstd_rand rnd(chrono::steady_clock::now().time_since_epoch().count());
template <typename T> struct Min {
inline T operator()(const T &a, const T &b) const { return std::min(a, b); }
};
template <typename T> struct Gcd {
inline T operator()(const T &a, const T &b) const { return std::gcd(a, b); }
};
inline size_t fast_log2(size_t x) { return 63 - __builtin_clzll(x); }
template <class T, class Merge> struct sparse_table {
private:
Merge merge;
std::vector<std::vector<T>> v;
public:
sparse_table(const std::vector<T> &arr) {
size_t n = arr.size();
size_t d = fast_log2(n) + 1;
v.reserve(d);
v.emplace_back(arr);
for (size_t k = 1; k < d; ++k) {
v.emplace_back();
v[k].reserve(n - (1ull << k) + 1);
for (size_t i = 0; i <= n - (1ull << k); ++i)
v[k].push_back(merge(v[k - 1][i], v[k - 1][i + (1ull << (k - 1))]));
}
}
T query(size_t l, size_t r) const {
assert(l < r);
size_t k = fast_log2(r - l);
return merge(v[k][l], v[k][r - (1ull << k)]);
}
};
int64_t quickPow(int64_t a, int64_t b, int64_t p) {
int64_t res = 1;
for (; b; b >>= 1) {
if (b & 1)
res = (__int128)res * a % p;
a = (__int128)a * a % p;
}
return res;
}
int base_millerRabin[7] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
bool millerRabin(int64_t n) {
if (n < 3 || !(n & 1))
return n == 2;
int64_t u = n - 1, t = 0;
while (!(u & 1))
u >>= 1, ++t;
for (int i = 0; i < 7; ++i) {
int a = base_millerRabin[i] % n;
if (a == 0)
continue;
int64_t v = quickPow(a, u, n);
if (v == 1)
continue;
int64_t s;
for (s = 0; s < t; ++s) {
if (v == n - 1)
break;
v = (__int128)v * v % n;
}
if (s == t)
return false;
}
return true;
}
int64_t Pollard_Rho(int64_t x) {
if (!(x & 1))
return 2;
if (x % 3 == 0)
return 3;
if (x % 5 == 0)
return 5;
if (x % 1001)
return 1001;
int64_t s = 0, t = 0;
int64_t c = rnd() % (x - 1) + 1;
int step = 0, goal = 1;
int64_t val = 1;
for (goal = 1;; goal <<= 1, s = t, val = 1) {
for (step = 1; step <= goal; ++step) {
t = ((__int128)t * t + c) % x;
val = (__int128)val * abs(t - s) % x;
if ((step % 127) == 0) {
int64_t d = gcd(val, x);
if (d > 1)
return d;
}
}
int64_t d = gcd(val, x);
if (d > 1)
return d;
}
}
void factoring(int64_t x, int64_t cnt, map<int64_t, int64_t> &ump) {
if (x < 2)
return;
if (millerRabin(x)) {
ump[x] += cnt;
return;
}
int64_t ct = 0;
int64_t p = x;
while (p >= x)
p = Pollard_Rho(x);
for (; x % p == 0; ++ct)
x /= p;
factoring(x, cnt, ump);
factoring(p, ct * cnt, ump);
}
#define Limit 1000000
vector<int64_t> factoring(int64_t x) {
vector<int64_t> res;
if (x > Limit) {
map<int64_t, int64_t> ump;
factoring(x, 1, ump);
res.push_back(1);
for (auto [p, c] : ump) {
size_t v = p;
size_t end = res.size();
for (size_t i = 0; i < c; ++i, v *= p)
for (size_t j = 0; j < end; ++j)
res.push_back(res[j] * v);
}
} else {
for (int64_t i = 1; i * i <= x; ++i)
if (x % i == 0) {
res.push_back(i);
if (i * i != x)
res.push_back(x / i);
}
}
return res;
}
#undef Limit
void solve() {
size_t n = rd(), k = rd();
vector<int64_t> a;
a.reserve(n);
for (size_t i = 0, x; i < n; ++i) {
x = rd();
if (a.size() == 0 || a.back() != x)
a.push_back(x);
}
a.shrink_to_fit();
n = a.size();
if (n == 1)
return wt(k), pc(' '), wt((k + 1) * k / 2), pc('\n');
vector<int64_t> df(n);
df[0] = a[0];
for (size_t i = 1; i < n; ++i)
df[i] = abs(a[i] - a[i - 1]);
sparse_table<int64_t, Min<int64_t>> min_a(a);
sparse_table<int64_t, Gcd<int64_t>> gcd_d(df);
auto range_sub_gcd = [&](size_t l, size_t r, int64_t sub) -> int64_t {
return r - l == 1 ? a[l] - sub : gcd(gcd_d.query(l + 1, r), a[l] - sub);
};
auto bin_left = [&](size_t x) -> size_t {
size_t l = 0, r = x;
while (l < r) {
size_t m = ((r - l) >> 1) + l;
if (min_a.query(m, x + 1) == a[x])
r = m;
else
l = m + 1;
}
return l;
};
auto bin_right = [&](size_t x) -> size_t {
size_t l = x + 1, r = n;
while (l < r) {
size_t m = ((r - l + 1) >> 1) + l;
if (min_a.query(x, m) == a[x])
l = m;
else
r = m - 1;
}
return l;
};
bool flag = false;
set<int64_t> last;
for (size_t i = 0; i < n; ++i) {
size_t l = bin_left(i), r = bin_right(i);
if (r - l <= 1)
continue;
auto g = range_sub_gcd(l, r, a[i]);
auto f = factoring(g);
if (!flag) {
for (int64_t j : f)
if (a[i] < j && j <= a[i] + k)
last.insert(j - a[i]);
flag = true;
} else {
set<int64_t> tmp;
for (int64_t j : f)
if (a[i] < j && j <= a[i] + k)
if (last.count(j - a[i]))
tmp.insert(j - a[i]);
swap(last, tmp);
}
}
int64_t sum = 0;
for (auto i : last)
sum += i;
wt(last.size()), pc(' '), wt(sum), pc('\n');
}
int main() {
int t = rd();
while (t--)
solve();
return fwrite(pbuf, 1, pp - pbuf, stdout), 0;
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 3584kb
input:
3 5 10 7 79 1 7 1 2 1000000000 1 2 1 100 1000000000
output:
3 8 0 0 100 5050
result:
ok 3 lines
Test #2:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
4 201 1000000000 1 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5...
output:
0 0 0 0 0 0 0 0
result:
ok 4 lines
Test #3:
score: 0
Accepted
time: 0ms
memory: 3584kb
input:
500 4 1000000000 8 14 24 18 4 1000000000 17 10 18 14 4 1000000000 6 17 19 19 4 1000000000 15 14 15 25 4 1000000000 16 16 5 25 4 1000000000 4 30 20 5 4 1000000000 11 4 23 9 4 1000000000 14 25 13 2 4 1000000000 18 18 1 15 4 1000000000 22 22 22 28 4 1000000000 15 17 17 10 4 1000000000 22 14 13 25 4 100...
output:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
result:
ok 500 lines
Test #4:
score: -100
Time Limit Exceeded
input:
1 50000 1000000000 230 286458 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 41263680 ...