QOJ.ac

QOJ

IDProblemSubmitterResultTimeMemoryLanguageFile sizeSubmit timeJudge time
#874340#9870. ItemslunchboxRE 15ms9984kbC++175.0kb2025-01-28 02:05:172025-01-28 02:05:18

Judging History

你现在查看的是最新测评结果

  • [2025-01-28 02:05:18]
  • 评测
  • 测评结果:RE
  • 用时:15ms
  • 内存:9984kb
  • [2025-01-28 02:05:17]
  • 提交

answer

//22:00 think
// code
#include<bits/stdc++.h>
using namespace std;
namespace GF {
#warning "GF::init() must be called."
const int LOG = 19, N_ = 1<<LOG, MOD = 998244353, RT = 5;
int *wu[LOG+1], *wv[LOG+1], vv[N_+1];
typedef vector<int> poly;
int expo(int a, int k) { int p = 1; for (; k; k /= 2, a = (long long) a*a % MOD) { if (k&1) p = (long long) p*a % MOD; } return p; }
void init() { for (int u = expo(RT, (MOD-1)>>LOG), v = expo(u, MOD-2), l = LOG; l > 0; l--) { int n = 1 << (l-1); wu[l] = new int[n], wv[l] = new int[n], wu[l][0] = wv[l][0] = 1; for (int i = 1; i < n; i++) wu[l][i] = (long long) wu[l][i-1]*u % MOD, wv[l][i] = (long long) wv[l][i-1]*v % MOD; u = (long long) u*u % MOD, v = (long long) v*v % MOD; } vv[1] = 1; for (int i = 2; i <= N_; i++) vv[i] = (long long) vv[MOD%i] * (MOD - MOD/i) % MOD; }
struct cip { int x, y, mod; cip operator*(const cip &b) { return cip{int(((long long) x*b.x + (long long) y*b.y % MOD * mod) % MOD), int(((long long) x*b.y + (long long) y*b.x) % MOD), mod }; } cip expo(int k) { cip b = *this, p = cip{1,0,mod}; for (; k; k /= 2, b = b*b) { if (k&1) p = p*b; } return p; } };
int cipolla(int x) { auto residue = [&](int x) { return expo(x, (MOD-1)/2) == 1; }; static mt19937 rng(0); if (x < 2) return x; if (!residue(x)) return -1; int u, v; do { u = uniform_int_distribution(0, MOD-1)(rng), v = ((long long) u*u%MOD - x + MOD) % MOD; } while (!u || residue(v)); u = cip{u,1,v}.expo((MOD+1)/2).x; return min(u, MOD-u); }
void ntt_(int *p, int l, bool inv) { if (!l) return; int n = 1<<l, *w = inv ? wv[l] : wu[l]; ntt_(p, l-1, inv), ntt_(p+n/2, l-1, inv); for (int i = 0, j, a, b; (j = i+n/2) < n; i++) { a = p[i], b = (long long) p[j]*w[i] % MOD; if ((p[i] = a+b) >= MOD) p[i] -= MOD; if ((p[j] = a-b) < 0) p[j] += MOD; } }
void ntt(int *p, int l, bool inv) { for (int i = 0, j = 1; j < 1<<l; j++) { for (int b = 1<<l>>1; (i ^= b) < b; b >>= 1) {} if (i < j) swap(p[i], p[j]); } ntt_(p, l, inv); if (inv) for (int n = 1<<l, v = expo(n, MOD-2), i = 0; i < n; i++) p[i] = (long long) p[i]*v % MOD; }
poly mod(poly p, int n) { if (int(p.size()) > n) p.resize(n); return p; }
poly operator+(poly p, const poly &q) { if (q.size() > p.size()) { p.resize(q.size()); } for (int i = 0; i < int(q.size()); i++) { if ((p[i] += q[i]) >= MOD) p[i] -= MOD; } return p; }
poly operator-(poly p, const poly &q) { if (q.size() > p.size()) { p.resize(q.size()); } for (int i = 0; i < int(q.size()); i++) { if ((p[i] -= q[i]) < 0) p[i] += MOD; } return p; }
poly operator*(poly p, int v) { for (int &x : p) x = (long long) x*v % MOD; return p; }
poly operator*(poly p, poly q) { if (p.empty() || q.empty()) return {}; if (min(p.size(), q.size()) <= 60) { poly f(p.size()+q.size()-1); for (int i = 0; i < int(p.size()); i++) { for (int j = 0; j < int(q.size()); j++) f[i+j] = (f[i+j] + (long long) p[i]*q[j])%MOD; } return f; } int N = p.size()+q.size()-1, l = 0, N_ = 1; while (N_ < N) N_ *= 2, l++; p.resize(N_), ntt(p.data(), l, 0), q.resize(N_), ntt(q.data(), l, 0); for (int i = 0; i < N_; i++) { p[i] = (long long) p[i]*q[i] % MOD; } ntt(p.data(), l, 1), p.resize(N); return p; }
poly derivative(poly p) { for (int i = 0; i < int(p.size())-1; i++) { p[i] = (long long) p[i+1]*(i+1) % MOD; } p.pop_back(); return p; }
poly integral(poly p) { for (int i = 0; i < int(p.size()); i++) { p[i] = (long long) p[i]*vv[i+1] % MOD; } p.insert(p.begin(), 0); return p; }
poly inv(const poly &p, int n = -1) { poly q = poly{expo(p[0], MOD-2)}; if (n == -1) { n = p.size(); } for (int n_ = 1; n_ < n; n_ *= 2) { q = mod(q * (poly{2} - mod(p, n_*2) * q), n_*2); } return mod(q, n); }
poly sqrt(const poly &p, int n = -1) { poly q = poly{cipolla(p[0])}; if (n == -1) { n = p.size(); } for (int n_ = 1, v2 = (MOD+1)/2; n_ < n; n_ *= 2) { q = mod(q + mod(p, n_*2) * inv(q, n_*2), n_*2) * v2; } return mod(q, n); }
poly ln(const poly &p, int n = -1) { if (n == -1) n = p.size(); return mod(integral(derivative(p) * inv(p, n)), n); }
poly exp(const poly &p, int n = -1) { poly q = {1}; if (n == -1) { n = p.size(); } for (int n_ = 1; n_ < n; n_ *= 2) { q = mod(q * (poly{1} - ln(q, n_*2) + mod(p, n_*2)), n_*2); } return mod(q, n); }
}
using GF::poly;
using GF::operator-;
using GF::operator+;
using GF::operator*;
struct S{
    int n,k;
    poly p;
    S(int n,int k):n(n),k(k),p(n*2+1){}
    void set(int i){p.at(n+i)=1;}
};
S operator*(const S&a,const S&b){
    assert(a.n==b.n);
    int n=a.n;
    S c(n,a.k+b.k);
    poly p=a.p*b.p;
    for(int i=-n;i<=n;i++)if(p[n+n+i])c.set(i);
    return c;
}
int main(){
    GF::init();
    cin.tie(0)->sync_with_stdio(0);
    int t;
    cin>>t;
    while(t--){
        int n,m;
        cin>>n>>m;
        int u=m/n,v=m%n;
        S base(n,1);
        for(int i=0;i<n;i++){
            int x;
            cin>>x;
            base.set(x-u);
        }
        S s(n,0);
        s.set(0);
        int p=n;
        while(p){
            if(p&1)s=s*base;
            base=base*base,p/=2;
        }
        assert(s.k==n);
        cout<<(s.p[n+v]?"Yes\n":"No\n");
    }
}

Details

Tip: Click on the bar to expand more detailed information

Test #1:

score: 100
Accepted
time: 3ms
memory: 9856kb

input:

4
5 25
0 0 0 0 5
5 11
4 4 4 5 5
5 0
1 2 3 4 5
5 25
0 1 2 3 4

output:

Yes
No
No
No

result:

ok 4 token(s): yes count is 1, no count is 3

Test #2:

score: 0
Accepted
time: 7ms
memory: 9984kb

input:

1314
1 0
0
1 0
1
1 1
0
1 1
1
2 0
0 0
2 0
0 1
2 0
0 2
2 0
1 0
2 0
1 1
2 0
1 2
2 0
2 0
2 0
2 1
2 0
2 2
2 1
0 0
2 1
0 1
2 1
0 2
2 1
1 0
2 1
1 1
2 1
1 2
2 1
2 0
2 1
2 1
2 1
2 2
2 2
0 0
2 2
0 1
2 2
0 2
2 2
1 0
2 2
1 1
2 2
1 2
2 2
2 0
2 2
2 1
2 2
2 2
2 3
0 0
2 3
0 1
2 3
0 2
2 3
1 0
2 3
1 1
2 3
1 2
2 3
2 0...

output:

Yes
No
No
Yes
Yes
Yes
Yes
Yes
No
No
Yes
No
No
No
Yes
No
Yes
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
Yes
No
Yes
No
No
No
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
Yes
Yes...

result:

ok 1314 token(s): yes count is 732, no count is 582

Test #3:

score: 0
Accepted
time: 15ms
memory: 9856kb

input:

10000
4 1
0 0 0 0
4 1
0 0 0 1
4 1
0 0 0 2
4 1
0 0 0 3
4 1
0 0 0 4
4 1
0 0 1 0
4 1
0 0 1 1
4 1
0 0 1 2
4 1
0 0 1 3
4 1
0 0 1 4
4 1
0 0 2 0
4 1
0 0 2 1
4 1
0 0 2 2
4 1
0 0 2 3
4 1
0 0 2 4
4 1
0 0 3 0
4 1
0 0 3 1
4 1
0 0 3 2
4 1
0 0 3 3
4 1
0 0 3 4
4 1
0 0 4 0
4 1
0 0 4 1
4 1
0 0 4 2
4 1
0 0 4 3
4 1
0 ...

output:

No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
Yes
No
No
No
No
Yes
No
No
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
No
No
No
Yes
Yes
Yes
Yes
Yes
No
Yes
No
No
No
No
Yes
No
No
No
No
Yes
No
No
No
No
Yes
No
No
No
Yes
Yes
Yes
Yes
...

result:

ok 10000 token(s): yes count is 6168, no count is 3832

Test #4:

score: 0
Accepted
time: 9ms
memory: 9984kb

input:

1612
5 0
0 0 0 0 0
5 0
1 1 1 1 1
5 0
0 1 1 1 1
5 0
2 2 2 2 2
5 0
0 2 2 2 2
5 0
1 2 2 2 2
5 0
0 1 2 2 2
5 0
3 3 3 3 3
5 0
0 3 3 3 3
5 0
1 3 3 3 3
5 0
0 1 3 3 3
5 0
2 3 3 3 3
5 0
0 2 3 3 3
5 0
1 2 3 3 3
5 0
0 1 2 3 3
5 0
4 4 4 4 4
5 0
0 4 4 4 4
5 0
1 4 4 4 4
5 0
0 1 4 4 4
5 0
2 4 4 4 4
5 0
0 2 4 4 4
5...

output:

Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No
Yes
No
No
No...

result:

ok 1612 token(s): yes count is 864, no count is 748

Test #5:

score: 0
Accepted
time: 9ms
memory: 9984kb

input:

4662
6 0
0 0 0 0 0 0
6 0
1 1 1 1 1 1
6 0
0 1 1 1 1 1
6 0
2 2 2 2 2 2
6 0
0 2 2 2 2 2
6 0
1 2 2 2 2 2
6 0
0 1 2 2 2 2
6 0
3 3 3 3 3 3
6 0
0 3 3 3 3 3
6 0
1 3 3 3 3 3
6 0
0 1 3 3 3 3
6 0
2 3 3 3 3 3
6 0
0 2 3 3 3 3
6 0
1 2 3 3 3 3
6 0
0 1 2 3 3 3
6 0
4 4 4 4 4 4
6 0
0 4 4 4 4 4
6 0
1 4 4 4 4 4
6 0
0 1...

output:

Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes
No...

result:

ok 4662 token(s): yes count is 2730, no count is 1932

Test #6:

score: -100
Runtime Error

input:

1
100000 9999999999
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 9...

output:


result: