QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#874339 | #9870. Items | lunchbox | RE | 11ms | 6912kb | C++17 | 5.0kb | 2025-01-28 02:04:42 | 2025-01-28 02:04:43 |
Judging History
answer
//22:00 think
// code
#include<bits/stdc++.h>
using namespace std;
namespace GF {
#warning "GF::init() must be called."
const int LOG = 18, N_ = 1<<LOG, MOD = 998244353, RT = 5;
int *wu[LOG+1], *wv[LOG+1], vv[N_+1];
typedef vector<int> poly;
int expo(int a, int k) { int p = 1; for (; k; k /= 2, a = (long long) a*a % MOD) { if (k&1) p = (long long) p*a % MOD; } return p; }
void init() { for (int u = expo(RT, (MOD-1)>>LOG), v = expo(u, MOD-2), l = LOG; l > 0; l--) { int n = 1 << (l-1); wu[l] = new int[n], wv[l] = new int[n], wu[l][0] = wv[l][0] = 1; for (int i = 1; i < n; i++) wu[l][i] = (long long) wu[l][i-1]*u % MOD, wv[l][i] = (long long) wv[l][i-1]*v % MOD; u = (long long) u*u % MOD, v = (long long) v*v % MOD; } vv[1] = 1; for (int i = 2; i <= N_; i++) vv[i] = (long long) vv[MOD%i] * (MOD - MOD/i) % MOD; }
struct cip { int x, y, mod; cip operator*(const cip &b) { return cip{int(((long long) x*b.x + (long long) y*b.y % MOD * mod) % MOD), int(((long long) x*b.y + (long long) y*b.x) % MOD), mod }; } cip expo(int k) { cip b = *this, p = cip{1,0,mod}; for (; k; k /= 2, b = b*b) { if (k&1) p = p*b; } return p; } };
int cipolla(int x) { auto residue = [&](int x) { return expo(x, (MOD-1)/2) == 1; }; static mt19937 rng(0); if (x < 2) return x; if (!residue(x)) return -1; int u, v; do { u = uniform_int_distribution(0, MOD-1)(rng), v = ((long long) u*u%MOD - x + MOD) % MOD; } while (!u || residue(v)); u = cip{u,1,v}.expo((MOD+1)/2).x; return min(u, MOD-u); }
void ntt_(int *p, int l, bool inv) { if (!l) return; int n = 1<<l, *w = inv ? wv[l] : wu[l]; ntt_(p, l-1, inv), ntt_(p+n/2, l-1, inv); for (int i = 0, j, a, b; (j = i+n/2) < n; i++) { a = p[i], b = (long long) p[j]*w[i] % MOD; if ((p[i] = a+b) >= MOD) p[i] -= MOD; if ((p[j] = a-b) < 0) p[j] += MOD; } }
void ntt(int *p, int l, bool inv) { for (int i = 0, j = 1; j < 1<<l; j++) { for (int b = 1<<l>>1; (i ^= b) < b; b >>= 1) {} if (i < j) swap(p[i], p[j]); } ntt_(p, l, inv); if (inv) for (int n = 1<<l, v = expo(n, MOD-2), i = 0; i < n; i++) p[i] = (long long) p[i]*v % MOD; }
poly mod(poly p, int n) { if (int(p.size()) > n) p.resize(n); return p; }
poly operator+(poly p, const poly &q) { if (q.size() > p.size()) { p.resize(q.size()); } for (int i = 0; i < int(q.size()); i++) { if ((p[i] += q[i]) >= MOD) p[i] -= MOD; } return p; }
poly operator-(poly p, const poly &q) { if (q.size() > p.size()) { p.resize(q.size()); } for (int i = 0; i < int(q.size()); i++) { if ((p[i] -= q[i]) < 0) p[i] += MOD; } return p; }
poly operator*(poly p, int v) { for (int &x : p) x = (long long) x*v % MOD; return p; }
poly operator*(poly p, poly q) { if (p.empty() || q.empty()) return {}; if (min(p.size(), q.size()) <= 60) { poly f(p.size()+q.size()-1); for (int i = 0; i < int(p.size()); i++) { for (int j = 0; j < int(q.size()); j++) f[i+j] = (f[i+j] + (long long) p[i]*q[j])%MOD; } return f; } int N = p.size()+q.size()-1, l = 0, N_ = 1; while (N_ < N) N_ *= 2, l++; p.resize(N_), ntt(p.data(), l, 0), q.resize(N_), ntt(q.data(), l, 0); for (int i = 0; i < N_; i++) { p[i] = (long long) p[i]*q[i] % MOD; } ntt(p.data(), l, 1), p.resize(N); return p; }
poly derivative(poly p) { for (int i = 0; i < int(p.size())-1; i++) { p[i] = (long long) p[i+1]*(i+1) % MOD; } p.pop_back(); return p; }
poly integral(poly p) { for (int i = 0; i < int(p.size()); i++) { p[i] = (long long) p[i]*vv[i+1] % MOD; } p.insert(p.begin(), 0); return p; }
poly inv(const poly &p, int n = -1) { poly q = poly{expo(p[0], MOD-2)}; if (n == -1) { n = p.size(); } for (int n_ = 1; n_ < n; n_ *= 2) { q = mod(q * (poly{2} - mod(p, n_*2) * q), n_*2); } return mod(q, n); }
poly sqrt(const poly &p, int n = -1) { poly q = poly{cipolla(p[0])}; if (n == -1) { n = p.size(); } for (int n_ = 1, v2 = (MOD+1)/2; n_ < n; n_ *= 2) { q = mod(q + mod(p, n_*2) * inv(q, n_*2), n_*2) * v2; } return mod(q, n); }
poly ln(const poly &p, int n = -1) { if (n == -1) n = p.size(); return mod(integral(derivative(p) * inv(p, n)), n); }
poly exp(const poly &p, int n = -1) { poly q = {1}; if (n == -1) { n = p.size(); } for (int n_ = 1; n_ < n; n_ *= 2) { q = mod(q * (poly{1} - ln(q, n_*2) + mod(p, n_*2)), n_*2); } return mod(q, n); }
}
using GF::poly;
using GF::operator-;
using GF::operator+;
using GF::operator*;
struct S{
int n,k;
poly p;
S(int n,int k):n(n),k(k),p(n*2+1){}
void set(int i){p.at(n+i)=1;}
};
S operator*(const S&a,const S&b){
assert(a.n==b.n);
int n=a.n;
S c(n,a.k+b.k);
poly p=a.p*b.p;
for(int i=-n;i<=n;i++)if(p[n+n+i])c.set(i);
return c;
}
int main(){
GF::init();
cin.tie(0)->sync_with_stdio(0);
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
int u=m/n,v=m%n;
S base(n,1);
for(int i=0;i<n;i++){
int x;
cin>>x;
base.set(x-u);
}
S s(n,0);
s.set(0);
int p=n;
while(p){
if(p&1)s=s*base;
base=base*base,p/=2;
}
assert(s.k==n);
cout<<(s.p[n+v]?"Yes\n":"No\n");
}
}
详细
Test #1:
score: 100
Accepted
time: 1ms
memory: 6784kb
input:
4 5 25 0 0 0 0 5 5 11 4 4 4 5 5 5 0 1 2 3 4 5 5 25 0 1 2 3 4
output:
Yes No No No
result:
ok 4 token(s): yes count is 1, no count is 3
Test #2:
score: 0
Accepted
time: 3ms
memory: 6656kb
input:
1314 1 0 0 1 0 1 1 1 0 1 1 1 2 0 0 0 2 0 0 1 2 0 0 2 2 0 1 0 2 0 1 1 2 0 1 2 2 0 2 0 2 0 2 1 2 0 2 2 2 1 0 0 2 1 0 1 2 1 0 2 2 1 1 0 2 1 1 1 2 1 1 2 2 1 2 0 2 1 2 1 2 1 2 2 2 2 0 0 2 2 0 1 2 2 0 2 2 2 1 0 2 2 1 1 2 2 1 2 2 2 2 0 2 2 2 1 2 2 2 2 2 3 0 0 2 3 0 1 2 3 0 2 2 3 1 0 2 3 1 1 2 3 1 2 2 3 2 0...
output:
Yes No No Yes Yes Yes Yes Yes No No Yes No No No Yes No Yes No No No No No No Yes Yes Yes Yes Yes Yes Yes No No No No No No Yes No Yes No No No Yes No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No Yes No No No Yes No No No Yes Yes Yes...
result:
ok 1314 token(s): yes count is 732, no count is 582
Test #3:
score: 0
Accepted
time: 10ms
memory: 6912kb
input:
10000 4 1 0 0 0 0 4 1 0 0 0 1 4 1 0 0 0 2 4 1 0 0 0 3 4 1 0 0 0 4 4 1 0 0 1 0 4 1 0 0 1 1 4 1 0 0 1 2 4 1 0 0 1 3 4 1 0 0 1 4 4 1 0 0 2 0 4 1 0 0 2 1 4 1 0 0 2 2 4 1 0 0 2 3 4 1 0 0 2 4 4 1 0 0 3 0 4 1 0 0 3 1 4 1 0 0 3 2 4 1 0 0 3 3 4 1 0 0 3 4 4 1 0 0 4 0 4 1 0 0 4 1 4 1 0 0 4 2 4 1 0 0 4 3 4 1 0 ...
output:
No Yes No No No Yes Yes Yes Yes Yes No Yes No No No No Yes No No No No Yes No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes No No No Yes Yes Yes Yes Yes No Yes No No No No Yes No No No No Yes No No No No Yes No No No Yes Yes Yes Yes ...
result:
ok 10000 token(s): yes count is 6168, no count is 3832
Test #4:
score: 0
Accepted
time: 6ms
memory: 6912kb
input:
1612 5 0 0 0 0 0 0 5 0 1 1 1 1 1 5 0 0 1 1 1 1 5 0 2 2 2 2 2 5 0 0 2 2 2 2 5 0 1 2 2 2 2 5 0 0 1 2 2 2 5 0 3 3 3 3 3 5 0 0 3 3 3 3 5 0 1 3 3 3 3 5 0 0 1 3 3 3 5 0 2 3 3 3 3 5 0 0 2 3 3 3 5 0 1 2 3 3 3 5 0 0 1 2 3 3 5 0 4 4 4 4 4 5 0 0 4 4 4 4 5 0 1 4 4 4 4 5 0 0 1 4 4 4 5 0 2 4 4 4 4 5 0 0 2 4 4 4 5...
output:
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No Yes No No No...
result:
ok 1612 token(s): yes count is 864, no count is 748
Test #5:
score: 0
Accepted
time: 11ms
memory: 6912kb
input:
4662 6 0 0 0 0 0 0 0 6 0 1 1 1 1 1 1 6 0 0 1 1 1 1 1 6 0 2 2 2 2 2 2 6 0 0 2 2 2 2 2 6 0 1 2 2 2 2 2 6 0 0 1 2 2 2 2 6 0 3 3 3 3 3 3 6 0 0 3 3 3 3 3 6 0 1 3 3 3 3 3 6 0 0 1 3 3 3 3 6 0 2 3 3 3 3 3 6 0 0 2 3 3 3 3 6 0 1 2 3 3 3 3 6 0 0 1 2 3 3 3 6 0 4 4 4 4 4 4 6 0 0 4 4 4 4 4 6 0 1 4 4 4 4 4 6 0 0 1...
output:
Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No...
result:
ok 4662 token(s): yes count is 2730, no count is 1932
Test #6:
score: -100
Runtime Error
input:
1 100000 9999999999 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 9...