QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#874241 | #9773. Infinite Loop | hhoppitree | WA | 31ms | 7424kb | C++17 | 682b | 2025-01-27 21:18:25 | 2025-01-27 21:18:27 |
Judging History
answer
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5;
int a[N], b[N], f[N];
signed main() {
int n, k, q; scanf("%d%d%d", &n, &k, &q);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &a[i], &b[i]);
a[i + n] = a[i] + k, b[i + n] = b[i];
a[i + n + n] = a[i] + k + k, b[i + n + n] = b[i];
}
for (int i = 1; i <= 3 * n; ++i) {
f[i] = max(f[i - 1], a[i]) + b[i];
}
while (q--) {
int x, y; scanf("%d%d", &x, &y);
long long t = (x == 1 ? f[y] : f[y + n] + 1ll * (f[y + n + n] - f[y + n]) * (x - 2)) - 2;
printf("%lld %lld\n", t / k + 1, t % k + 1);
}
return 0;
}
详细
Test #1:
score: 100
Accepted
time: 0ms
memory: 5964kb
input:
2 5 6 1 1 4 3 1 1 1 2 2 1 2 2 3 1 3 2
output:
1 1 2 1 2 2 3 1 3 2 4 1
result:
ok 12 numbers
Test #2:
score: 0
Accepted
time: 1ms
memory: 5964kb
input:
3 10 5 2 4 3 1 10 7 2 2 7 1 4 3 5 2 28 3
output:
3 1 8 10 6 2 6 7 34 10
result:
ok 10 numbers
Test #3:
score: 0
Accepted
time: 0ms
memory: 5896kb
input:
2 5 6 1 1 4 4 1 1 1 2 2 1 2 2 3 1 3 2
output:
1 1 2 2 2 3 3 2 3 3 4 2
result:
ok 12 numbers
Test #4:
score: -100
Wrong Answer
time: 31ms
memory: 7424kb
input:
100000 100000000 100000 10 100000000 20 100000000 30 100000000 40 100000000 50 100000000 60 100000000 70 100000000 80 100000000 90 100000000 100 100000000 110 100000000 120 100000000 130 100000000 140 100000000 150 100000000 160 100000000 170 100000000 180 100000000 190 100000000 200 100000000 210 1...
output:
-2890319 -67413661 3672879 66733839 -413078 -91477511 925049 95761979 -2656039 -68667571 -553939 -91807731 1924620 83186829 -4145908 -53658551 941908 92069949 19 2761289 989589 91554589 1364397 91543409 19 2480619 3360928 70429829 -243355 -96168871 -1056944 -86435701 1837462 84256149 11 3842169 7 84...
result:
wrong answer 1st numbers differ - expected: '36129307020', found: '-2890319'