QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#872286 | #8614. 3D | ucup-team008# | WA | 0ms | 4096kb | C++17 | 3.9kb | 2025-01-26 00:33:33 | 2025-01-26 00:33:34 |
Judging History
answer
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cstring>
#include <functional>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <stack>
#include <vector>
using namespace std;
// BEGIN NO SAD
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define lb lower_bound
#define ub upper_bound
typedef vector<int> vi;
#define f first
#define s second
#define derr if(1) cerr
void __print(int x) {cerr << x;}
void __print(long x) {cerr << x;}
void __print(long long x) {cerr << x;}
void __print(unsigned x) {cerr << x;}
void __print(unsigned long x) {cerr << x;}
void __print(unsigned long long x) {cerr << x;}
void __print(float x) {cerr << x;}
void __print(double x) {cerr << x;}
void __print(long double x) {cerr << x;}
void __print(char x) {cerr << '\'' << x << '\'';}
void __print(const char *x) {cerr << '\"' << x << '\"';}
void __print(const string &x) {cerr << '\"' << x << '\"';}
void __print(bool x) {cerr << (x ? "true" : "false");}
template<typename T, typename V>
void __print(const pair<T, V> &x) {cerr << '{'; __print(x.first); cerr << ", "; __print(x.second); cerr << '}';}
template<typename T>
void __print(const T &x) {int f = 0; cerr << '{'; for (auto &i: x) cerr << (f++ ? ", " : ""), __print(i); cerr << "}";}
void _print() {cerr << "]\n";}
template <typename T, typename... V>
void _print(T t, V... v) {__print(t); if (sizeof...(v)) cerr << ", "; _print(v...);}
#define debug(x...) cerr << "\e[91m"<<__func__<<":"<<__LINE__<<" [" << #x << "] = ["; _print(x); cerr << "\e[39m" << flush;
// END NO SAD
template<class T>
bool updmin(T& a, T b) {
if(b < a) {
a = b;
return true;
}
return false;
}
template<class T>
bool updmax(T& a, T b) {
if(b > a) {
a = b;
return true;
}
return false;
}
typedef int64_t ll;
mt19937 g1(0x14004);
const double MAX_SHIFT = 0.1;
const double PI = acos(-1);
int get_random_int(int a, int b) {
return uniform_int_distribution<int>(a, b)(g1);
}
double gen_random(double p) {
return uniform_real_distribution<double>(0, p)(g1);
}
void solve() {
int n;
cin >> n;
vector<vector<double>> dist(n);
vector<array<double, 3>> ret(n);
auto getscore = [&]() -> double {
double ans = 0;
for(int i = 0; i < n; i++) for(int j = i+1; j < n; j++) {
double x = ret[i][0] - ret[j][0];
double y = ret[i][1] - ret[j][1];
double z = ret[i][2] - ret[j][2];
updmax(ans, x*x+y*y+z*z);
}
return ans;
};
for(auto& x: dist) {
x.resize(n);
for(auto& y: x) cin >> y;
}
for(auto& x: ret) for(auto& y: x) y = gen_random(1);
int itercount = 0;
while(true) {
itercount++;
double curr = getscore();
if(curr < 0.01) break;
int candidx = get_random_int(0, n-1);
array<double, 3> orig = ret[candidx];
double dist = gen_random(MAX_SHIFT);
double theta = gen_random(2*PI);
double phi = gen_random(PI) - (PI/2);
ret[candidx][0] += dist * sin(phi) * cos(theta);
ret[candidx][1] += dist * sin(phi) * sin(theta);
ret[candidx][2] += dist * cos(phi);
if(getscore() >= curr) ret[candidx] = orig;
}
cout << fixed << setprecision(39);
for(int i = 0; i < n; i++) for(int j = 0; j < 3; j++) cout << ret[i][j] << " \n"[j == 2];
}
// what would chika do
// are there edge cases (N=1?)
// are array sizes proper (scaled by proper constant, for example 2* for koosaga tree)
// integer overflow?
// DS reset properly between test cases
// are you doing geometry in floating points
int main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
solve();
}
詳細信息
Test #1:
score: 0
Wrong Answer
time: 0ms
memory: 4096kb
input:
4 0.000000 0.758400 0.557479 0.379026 0.758400 0.000000 0.516608 0.446312 0.557479 0.516608 0.000000 0.554364 0.379026 0.446312 0.554364 0.000000
output:
0.476638217213335713129396253862068988383 0.387886334417118450179629007834591902792 1.123152154160121263259952684165909886360 0.512321992361750799815922619018238037825 0.369796422642115873991031094192294403911 1.056202387813913290415257506538182497025 0.503775343333263236900165793485939502716 0.3670...
result:
wrong answer Expected distance between 0 and 1 is 0.758400, but found 0.077993