QOJ.ac
QOJ
ID | Problem | Submitter | Result | Time | Memory | Language | File size | Submit time | Judge time |
---|---|---|---|---|---|---|---|---|---|
#871151 | #8617. Geo Sharding | ucup-team296# | WA | 0ms | 2176kb | Rust | 34.6kb | 2025-01-25 19:41:00 | 2025-01-25 19:41:03 |
Judging History
answer
// https://contest.ucup.ac/contest/1901/problem/8617
use crate::algo_lib::collections::md_arr::arr2d::Arr2d;
use crate::algo_lib::collections::slice_ext::compress::{compress, Compressed};
use crate::algo_lib::collections::slice_ext::indices::Indices;
use crate::algo_lib::collections::slice_ext::qty::Qty;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
use crate::algo_lib::numbers::num_utils::UpperDiv;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
let n = input.read_size();
let mut ans = Arr2d::with_gen(
n,
n,
|i, j| i / 10 + (j + 5) / 10 * i.upper_div(10) + 1,
)
.into_iter()
.collect::<Vec<_>>();
let mut qty = ans.qty();
loop {
let mut dif = 0;
let mut m1 = 0;
let mut m1at = 0;
let mut m2 = 0;
let mut m2at = 0;
for i in qty.indices() {
if qty[i] != 0 {
dif += 1;
if qty[i] < m1 {
m2 = m1;
m2at = m1at;
m1 = qty[i];
m1at = i;
} else if qty[i] < m2 {
m2 = qty[i];
m2at = i;
}
}
}
if dif <= 10 + n * n / 100 {
break;
}
if m1 + m2 > 150 {
panic!("Too many");
}
qty[m1at] = m1 + m2;
qty[m2at] = 0;
for i in ans.indices() {
if ans[i] == m2at {
ans[i] = m1at;
}
}
}
let Compressed { arrs: [ans], .. } = compress([&ans]);
let ans = Arr2d::with_gen(n, n, |i, j| ans[i * n + j] + 1);
out.print_line(ans);
}
pub static TEST_TYPE: TestType = TestType::Single;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = ();
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => input.is_empty(),
TaskType::Interactive => true,
}
}
fn main() {
let input = crate::algo_lib::io::input::Input::stdin();
let output = crate::algo_lib::io::output::Output::stdout();
run(input, output);
}
pub mod algo_lib {
pub mod collections {
pub mod md_arr {
pub mod arr2d {
use crate::algo_lib::io::input::{Input, Readable};
use crate::algo_lib::io::output::{Output, Writable};
use std::iter::{Skip, StepBy, Take};
use std::mem::MaybeUninit;
use std::ops::{Index, IndexMut, Range};
use std::slice::{Iter, IterMut};
use std::vec::IntoIter;
#[derive(Clone, Eq, PartialEq, Default, Debug, Hash, Ord, PartialOrd)]
pub struct Arr2d<T> {
d1: usize,
d2: usize,
data: Vec<T>,
}
impl<T: Clone> Arr2d<T> {
pub fn new(d1: usize, d2: usize, value: T) -> Self {
Self {
d1,
d2,
data: vec![value; d1 * d2],
}
}
}
impl<T> Arr2d<T> {
pub fn with_gen<F>(d1: usize, d2: usize, mut g: F) -> Self
where
F: FnMut(usize, usize) -> T,
{
let mut data = Vec::with_capacity(d1 * d2);
for i in 0usize..d1 {
for j in 0usize..d2 {
data.push(g(i, j));
}
}
Self { d1, d2, data }
}
pub fn d1(&self) -> usize {
self.d1
}
pub fn d2(&self) -> usize {
self.d2
}
pub fn iter(&self) -> Iter<'_, T> {
self.data.iter()
}
pub fn iter_mut(&mut self) -> IterMut<'_, T> {
self.data.iter_mut()
}
pub fn row(&self, row: usize) -> Take<Skip<Iter<'_, T>>> {
assert!(row < self.d1);
self.data.iter().skip(row * self.d2).take(self.d2)
}
pub fn row_mut(&mut self, row: usize) -> Take<Skip<IterMut<'_, T>>> {
assert!(row < self.d1);
self.data.iter_mut().skip(row * self.d2).take(self.d2)
}
pub fn col(&self, col: usize) -> StepBy<Skip<Iter<'_, T>>> {
assert!(col < self.d2);
self.data.iter().skip(col).step_by(self.d2)
}
pub fn col_mut(&mut self, col: usize) -> StepBy<Skip<IterMut<'_, T>>> {
assert!(col < self.d2);
self.data.iter_mut().skip(col).step_by(self.d2)
}
pub fn swap(&mut self, r1: usize, c1: usize, r2: usize, c2: usize) {
assert!(c1 < self.d2);
assert!(c2 < self.d2);
self.data.swap(r1 * self.d2 + c1, r2 * self.d2 + c2);
}
pub fn rows(&self) -> Range<usize> {
0..self.d1
}
pub fn cols(&self) -> Range<usize> {
0..self.d2
}
pub fn swap_rows(&mut self, r1: usize, r2: usize) {
if r1 == r2 {
assert!(r1 < self.d1);
return;
}
let (r1, r2) = (r1.min(r2), r1.max(r2));
let (head, tail) = self.data.split_at_mut(r2 * self.d2);
head[r1 * self.d2..(r1 + 1) * self.d2].swap_with_slice(&mut tail[..self.d2]);
}
pub fn rotate_clockwise(self) -> Self {
unsafe {
let d1 = self.d1;
let d2 = self.d2;
let mut res = MaybeUninit::new(Vec::with_capacity(d1 * d2));
(*res.as_mut_ptr()).set_len(d1 * d2);
for (id, element) in self.into_iter().enumerate() {
let (i, j) = (id / d2, id % d2);
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add(j * d1 + d1 - i - 1).write(element);
}
Self {
d1: d2,
d2: d1,
data: res.assume_init(),
}
}
}
pub fn rotate_counterclockwise(self) -> Self {
unsafe {
let d1 = self.d1;
let d2 = self.d2;
let mut res = MaybeUninit::new(Vec::with_capacity(d1 * d2));
(*res.as_mut_ptr()).set_len(d1 * d2);
for (id, element) in self.into_iter().enumerate() {
let (i, j) = (id / d2, id % d2);
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add((d2 - j - 1) * d1 + i).write(element);
}
Self {
d1: d2,
d2: d1,
data: res.assume_init(),
}
}
}
pub fn transpose(self) -> Self {
unsafe {
let d1 = self.d1;
let d2 = self.d2;
let mut res = MaybeUninit::new(Vec::with_capacity(d1 * d2));
(*res.as_mut_ptr()).set_len(d1 * d2);
for (id, element) in self.into_iter().enumerate() {
let (i, j) = (id / d2, id % d2);
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add(j * d1 + i).write(element);
}
Self {
d1: d2,
d2: d1,
data: res.assume_init(),
}
}
}
}
impl<T: Clone> Arr2d<T> {
pub fn fill(&mut self, elem: T) {
self.data.fill(elem);
}
}
impl<T> Index<(usize, usize)> for Arr2d<T> {
type Output = T;
fn index(&self, (row, col): (usize, usize)) -> &Self::Output {
assert!(col < self.d2);
&self.data[self.d2 * row + col]
}
}
impl<T> Index<usize> for Arr2d<T> {
type Output = [T];
fn index(&self, index: usize) -> &Self::Output {
&self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> IndexMut<(usize, usize)> for Arr2d<T> {
fn index_mut(&mut self, (row, col): (usize, usize)) -> &mut T {
assert!(col < self.d2);
&mut self.data[self.d2 * row + col]
}
}
impl<T> IndexMut<usize> for Arr2d<T> {
fn index_mut(&mut self, index: usize) -> &mut [T] {
&mut self.data[self.d2 * index..self.d2 * (index + 1)]
}
}
impl<T> AsRef<Vec<T>> for Arr2d<T> {
fn as_ref(&self) -> &Vec<T> {
&self.data
}
}
impl<T> AsMut<Vec<T>> for Arr2d<T> {
fn as_mut(&mut self) -> &mut Vec<T> {
&mut self.data
}
}
impl<T: Writable> Writable for Arr2d<T> {
fn write(&self, output: &mut Output) {
let mut at = 0usize;
for i in 0usize..self.d1 {
if i != 0 {
output.put(b'\n');
}
for j in 0usize..self.d2 {
if j != 0 {
output.put(output.separator());
}
self.data[at].write(output);
at += 1;
}
}
}
}
impl<T> IntoIterator for Arr2d<T> {
type Item = T;
type IntoIter = IntoIter<T>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
impl<'a, T> IntoIterator for &'a Arr2d<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
pub trait Arr2dRead {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T>;
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32>;
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64>;
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize>;
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<u8>;
}
impl Arr2dRead for Input {
fn read_table<T: Readable>(&mut self, d1: usize, d2: usize) -> Arr2d<T> {
Arr2d::with_gen(d1, d2, |_, _| self.read())
}
fn read_int_table(&mut self, d1: usize, d2: usize) -> Arr2d<i32> {
self.read_table(d1, d2)
}
fn read_long_table(&mut self, d1: usize, d2: usize) -> Arr2d<i64> {
self.read_table(d1, d2)
}
fn read_size_table(&mut self, d1: usize, d2: usize) -> Arr2d<usize> {
self.read_table(d1, d2)
}
fn read_char_table(&mut self, d1: usize, d2: usize) -> Arr2d<u8> {
self.read_table(d1, d2)
}
}
pub trait Arr2dCharWrite {
fn print_table(&mut self, table: &Arr2d<u8>);
}
impl Arr2dCharWrite for Output<'_> {
fn print_table(&mut self, table: &Arr2d<u8>) {
let mut at = 0usize;
for _ in 0..table.d1 {
for _ in 0..table.d2 {
self.put(table.data[at]);
at += 1;
}
self.put(b'\n');
}
}
}
impl<T: Readable> Readable for Arr2d<T> {
fn read(input: &mut Input) -> Self {
let d1 = input.read();
let d2 = input.read();
input.read_table(d1, d2)
}
}
}
}
pub mod slice_ext {
pub mod bounds {
use std::ops::{Bound, RangeBounds};
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
fn inside<'a>(&self, bounds: impl RangeBounds<&'a T>) -> usize
where
T: 'a;
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el { None } else { Some(at) }
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
fn inside<'a>(&self, bounds: impl RangeBounds<&'a T>) -> usize
where
T: 'a,
{
let to = match bounds.end_bound() {
Bound::Included(el) => self.less_or_eq(el),
Bound::Excluded(el) => self.less(el),
Bound::Unbounded => self.len(),
};
let from = match bounds.start_bound() {
Bound::Included(el) => self.less(el),
Bound::Excluded(el) => self.less_or_eq(el),
Bound::Unbounded => 0,
};
to - from
}
}
}
pub mod compress {
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use std::mem::MaybeUninit;
#[derive(Eq, PartialEq, Debug)]
pub struct Compressed<T, const N: usize> {
pub order: Vec<T>,
pub arrs: [Vec<usize>; N],
}
pub fn compress<T: Ord + Clone, const N: usize>(vs: [&[T]; N]) -> Compressed<T, N> {
let mut size = 0;
for v in &vs {
size += v.len();
}
let mut all = Vec::with_capacity(size);
for v in &vs {
all.extend_from_slice(v);
}
all.sort();
all.dedup();
let arrs = unsafe {
let mut arr: MaybeUninit<[Vec<usize>; N]> = MaybeUninit::uninit();
for (i, v) in vs.iter().enumerate() {
let mut cur = Vec::with_capacity(vs[i].len());
for vv in *v {
cur.push(all.bin_search(vv).unwrap());
}
arr.as_mut_ptr().cast::<Vec<usize>>().add(i).write(cur);
}
arr.assume_init()
};
Compressed { order: all, arrs }
}
}
pub mod indices {
use std::ops::Range;
pub trait Indices {
fn indices(&self) -> Range<usize>;
}
impl<T> Indices for [T] {
fn indices(&self) -> Range<usize> {
0..self.len()
}
}
}
pub mod qty {
pub trait Qty {
fn qty_bound(&self, bound: usize) -> Vec<usize>;
fn qty(&self) -> Vec<usize>;
}
impl Qty for [usize] {
fn qty_bound(&self, bound: usize) -> Vec<usize> {
let mut res = vec![0; bound];
for i in self.iter() {
res[*i] += 1;
}
res
}
fn qty(&self) -> Vec<usize> {
if self.is_empty() {
Vec::new()
} else {
self.qty_bound(self.iter().max().unwrap() + 1)
}
}
}
}
}
}
pub mod io {
pub mod input {
use std::fs::File;
use std::io::{Read, Stdin};
use std::mem::MaybeUninit;
enum InputSource {
Stdin(Stdin),
File(File),
Slice,
Delegate(Box<dyn Read + Send>),
}
pub struct Input {
input: InputSource,
buf: Vec<u8>,
at: usize,
buf_read: usize,
eol: bool,
}
macro_rules! read_impl {
($t:ty, $read_name:ident, $read_vec_name:ident) => {
pub fn $read_name (& mut self) -> $t { self.read() } pub fn $read_vec_name (& mut
self, len : usize) -> Vec <$t > { self.read_vec(len) }
};
($t:ty, $read_name:ident, $read_vec_name:ident, $read_pair_vec_name:ident) => {
read_impl!($t, $read_name, $read_vec_name); pub fn $read_pair_vec_name (& mut
self, len : usize) -> Vec < ($t, $t) > { self.read_vec(len) }
};
}
impl Input {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn slice(input: &[u8]) -> Self {
Self {
input: InputSource::Slice,
buf: input.to_vec(),
at: 0,
buf_read: input.len(),
eol: true,
}
}
pub fn stdin() -> Self {
Self {
input: InputSource::Stdin(std::io::stdin()),
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
buf_read: 0,
eol: true,
}
}
pub fn file(file: File) -> Self {
Self {
input: InputSource::File(file),
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
buf_read: 0,
eol: true,
}
}
pub fn delegate(reader: impl Read + Send + 'static) -> Self {
Self {
input: InputSource::Delegate(Box::new(reader)),
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
buf_read: 0,
eol: true,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
self.eol = true;
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
self.eol = res == b'\n';
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !b.is_ascii_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if c.is_ascii_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() { None } else { Some(res) }
}
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> u8 {
self.skip_whitespace();
self.get().unwrap()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = match &mut self.input {
InputSource::Stdin(stdin) => stdin.read(&mut self.buf).unwrap(),
InputSource::File(file) => file.read(&mut self.buf).unwrap(),
InputSource::Delegate(reader) => reader.read(&mut self.buf).unwrap(),
InputSource::Slice => 0,
};
self.buf_read != 0
} else {
true
}
}
pub fn is_eol(&self) -> bool {
self.eol
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for u8 {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
impl<T: Readable, const SIZE: usize> Readable for [T; SIZE] {
fn read(input: &mut Input) -> Self {
unsafe {
let mut res = MaybeUninit::<[T; SIZE]>::uninit();
for i in 0..SIZE {
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add(i).write(input.read::<T>());
}
res.assume_init()
}
}
}
macro_rules! read_integer {
($($t:ident)+) => {
$(impl Readable for $t { fn read(input : & mut Input) -> Self { input
.skip_whitespace(); let mut c = input.get().unwrap(); let sgn = match c { b'-' =>
{ c = input.get().unwrap(); true } b'+' => { c = input.get().unwrap(); false } _
=> false, }; let mut res = 0; loop { assert!(c.is_ascii_digit()); res *= 10; let
d = (c - b'0') as $t; if sgn { res -= d; } else { res += d; } match input.get() {
None => break, Some(ch) => { if ch.is_ascii_whitespace() { break; } else { c =
ch; } } } } res } })+
};
}
read_integer!(i8 i16 i32 i64 i128 isize u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl <$($name : Readable),+> Readable for ($($name,)+) { fn read(input : & mut
Input) -> Self { ($($name ::read(input),)+) } }
};
}
tuple_readable! {
T
}
tuple_readable! {
T U
}
tuple_readable! {
T U V
}
tuple_readable! {
T U V X
}
tuple_readable! {
T U V X Y
}
tuple_readable! {
T U V X Y Z
}
tuple_readable! {
T U V X Y Z A
}
tuple_readable! {
T U V X Y Z A B
}
tuple_readable! {
T U V X Y Z A B C
}
tuple_readable! {
T U V X Y Z A B C D
}
tuple_readable! {
T U V X Y Z A B C D E
}
tuple_readable! {
T U V X Y Z A B C D E F
}
}
pub mod output {
use std::cmp::Reverse;
use std::fs::File;
use std::io::{Stdout, Write};
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
enum OutputDest<'s> {
Stdout(Stdout),
File(File),
Buf(&'s mut Vec<u8>),
Delegate(Box<dyn Write + 's>),
}
pub struct Output<'s> {
output: OutputDest<'s>,
buf: Vec<u8>,
at: usize,
bool_output: BoolOutput,
precision: Option<usize>,
separator: u8,
}
impl<'s> Output<'s> {
pub fn buf(buf: &'s mut Vec<u8>) -> Self {
Self::new(OutputDest::Buf(buf))
}
pub fn delegate(delegate: impl Write + 'static) -> Self {
Self::new(OutputDest::Delegate(Box::new(delegate)))
}
fn new(output: OutputDest<'s>) -> Self {
Self {
output,
buf: vec![0; Self::DEFAULT_BUF_SIZE],
at: 0,
bool_output: BoolOutput::YesNoCaps,
precision: None,
separator: b' ',
}
}
}
impl Output<'static> {
pub fn stdout() -> Self {
Self::new(OutputDest::Stdout(std::io::stdout()))
}
pub fn file(file: File) -> Self {
Self::new(OutputDest::File(file))
}
}
impl Output<'_> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn flush(&mut self) {
if self.at != 0 {
match &mut self.output {
OutputDest::Stdout(stdout) => {
stdout.write_all(&self.buf[..self.at]).unwrap();
stdout.flush().unwrap();
}
OutputDest::File(file) => {
file.write_all(&self.buf[..self.at]).unwrap();
file.flush().unwrap();
}
OutputDest::Buf(buf) => buf.extend_from_slice(&self.buf[..self.at]),
OutputDest::Delegate(delegate) => {
delegate.write_all(&self.buf[..self.at]).unwrap();
delegate.flush().unwrap();
}
}
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
self.print_per_line_iter(arg.iter());
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(self.separator);
}
e.write(self);
}
}
pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
self.print_iter(iter);
self.put(b'\n');
}
pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
for e in iter {
e.write(self);
self.put(b'\n');
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
pub fn set_precision(&mut self, precision: usize) {
self.precision = Some(precision);
}
pub fn reset_precision(&mut self) {
self.precision = None;
}
pub fn get_precision(&self) -> Option<usize> {
self.precision
}
pub fn separator(&self) -> u8 {
self.separator
}
pub fn set_separator(&mut self, separator: u8) {
self.separator = separator;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl Writable for u8 {
fn write(&self, output: &mut Output) {
output.put(*self);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {
$(impl Writable for $t { fn write(& self, output : & mut Output) { self
.to_string().write(output); } })+
};
}
write_to_string!(u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident : $id:tt)*) => {
impl <$name0 : Writable, $($name : Writable,)*> Writable for ($name0, $($name,)*)
{ fn write(& self, out : & mut Output) { self.0.write(out); $(out.put(out
.separator); self.$id .write(out);)* } }
};
}
tuple_writable! {
T
}
tuple_writable! {
T U : 1
}
tuple_writable! {
T U : 1 V : 2
}
tuple_writable! {
T U : 1 V : 2 X : 3
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6 B : 7
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6 B : 7 C : 8
}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid: MultiplicationMonoid + Div<
Output = Self,
> + Rem<Output = Self> + DivAssign + RemAssign {}
impl<
T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign
+ RemAssign,
> IntegerMultiplicationMonoid for T {}
pub trait MultiplicationGroup: MultiplicationMonoid + Div<
Output = Self,
> + DivAssign + Invertible<Output = Self> {}
impl<
T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>,
> MultiplicationGroup for T {}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t:ident)+) => {
$(impl Zero for $t { fn zero() -> Self { 0 } } impl One for $t { fn one() -> Self
{ 1 } })+
};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod as_index {
pub trait AsIndex {
fn from_index(idx: usize) -> Self;
fn to_index(self) -> usize;
}
macro_rules! from_index_impl {
($($t:ident)+) => {
$(impl AsIndex for $t { fn from_index(idx : usize) -> Self { idx as $t } fn
to_index(self) -> usize { self as usize } })+
};
}
from_index_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
}
pub mod num_utils {
use crate::algo_lib::numbers::num_traits::algebra::{
AdditionMonoid, IntegerSemiRingWithSub, MultiplicationMonoid,
};
use crate::algo_lib::numbers::num_traits::as_index::AsIndex;
pub fn factorials<T: MultiplicationMonoid + Copy + AsIndex>(len: usize) -> Vec<T> {
let mut res = Vec::new();
if len > 0 {
res.push(T::one());
}
while res.len() < len {
res.push((*res.last().unwrap()) * T::from_index(res.len()));
}
res
}
pub fn powers<T: MultiplicationMonoid + Copy>(base: T, len: usize) -> Vec<T> {
let mut res = Vec::new();
if len > 0 {
res.push(T::one());
}
while res.len() < len {
res.push((*res.last().unwrap()) * base);
}
res
}
pub struct Powers<T: MultiplicationMonoid + Copy> {
small: Vec<T>,
big: Vec<T>,
}
impl<T: MultiplicationMonoid + Copy> Powers<T> {
pub fn new(base: T, len: usize) -> Self {
let small = powers(base, len);
let big = powers(small[len - 1] * base, len);
Self { small, big }
}
pub fn power(&self, exp: usize) -> T {
debug_assert!(exp < self.small.len() * self.small.len());
self.big[exp / self.small.len()] * self.small[exp % self.small.len()]
}
}
pub fn factorial<T: MultiplicationMonoid + AsIndex>(n: usize) -> T {
let mut res = T::one();
for i in 1..=n {
res *= T::from_index(i);
}
res
}
pub trait PartialSums<T> {
fn partial_sums(&self) -> Vec<T>;
}
impl<T: AdditionMonoid + Copy> PartialSums<T> for [T] {
fn partial_sums(&self) -> Vec<T> {
let mut res = Vec::with_capacity(self.len() + 1);
res.push(T::zero());
for i in self.iter() {
res.push(*res.last().unwrap() + *i);
}
res
}
}
pub trait UpperDiv {
fn upper_div(self, other: Self) -> Self;
}
impl<T: IntegerSemiRingWithSub + Copy> UpperDiv for T {
fn upper_div(self, other: Self) -> Self {
(self + other - Self::one()) / other
}
}
}
}
}
Details
Tip: Click on the bar to expand more detailed information
Test #1:
score: 100
Accepted
time: 0ms
memory: 2176kb
input:
3
output:
1 1 1 1 1 1 1 1 1
result:
ok OK
Test #2:
score: -100
Wrong Answer
time: 0ms
memory: 2176kb
input:
50
output:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 ...
result:
wrong answer One color is used too many times