QOJ.ac
QOJ
ID | 题目 | 提交者 | 结果 | 用时 | 内存 | 语言 | 文件大小 | 提交时间 | 测评时间 |
---|---|---|---|---|---|---|---|---|---|
#843164 | #9962. Diminishing Fractions | ucup-team5243# | WA | 78ms | 4016kb | C++17 | 11.4kb | 2025-01-04 17:04:43 | 2025-01-04 17:04:43 |
Judging History
answer
//#ifdef NACHIA
//#define _GLIBCXX_DEBUG
//#else
//#define NDEBUG
//#endif
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using i64 = long long;
using u64 = unsigned long long;
#define rep(i,n) for(int i=0; i<int(n); i++)
const i64 INF = 1001001001001001001;
template<typename A> void chmin(A& l, const A& r){ if(r < l) l = r; }
template<typename A> void chmax(A& l, const A& r){ if(l < r) l = r; }
using namespace std;
#include <array>
#include <cassert>
namespace nachia{
namespace prime_sieve_explicit_internal{
std::vector<bool> isprime = { false }; // a[x] := isprime(2x+1)
void CalcIsPrime(int z){
if((int)isprime.size() *2+1 < z+1){
int new_z = isprime.size();
while(new_z*2+1 < z+1) new_z *= 2;
z = new_z-1;
isprime.resize(z+1, true);
for(int i=1; i*(i+1)*2<=z; i++) if(isprime[i]){
for(int j=i*(i+1)*2; j<=z; j+=i*2+1) isprime[j] = false;
}
}
}
std::vector<int> prime_list = {2};
int prime_list_max = 0;
void CalcPrimeList(int z){
while((int)prime_list.size() < z){
if((int)isprime.size() <= prime_list_max + 1) CalcIsPrime(prime_list_max * 2 + 10);
for(int p=prime_list_max+1; p<(int)isprime.size(); p++){
if(isprime[p]) prime_list.push_back(p*2+1);
}
prime_list_max = isprime.size() - 1;
}
}
void CalcPrimeListUntil(int z){
if(prime_list_max < z){
CalcIsPrime(z);
for(int p=prime_list_max+1; p<(int)isprime.size(); p++){
if(isprime[p]) prime_list.push_back(p*2+1);
}
prime_list_max = isprime.size() - 1;
}
}
}
bool IsprimeExplicit(int n){
using namespace prime_sieve_explicit_internal;
if(n == 2) return true;
if(n % 2 == 0) return false;
CalcIsPrime(n);
return isprime[(n-1)/2];
}
int NthPrimeExplicit(int n){
using namespace prime_sieve_explicit_internal;
CalcPrimeList(n);
return prime_list[n];
}
int PrimeCountingExplicit(int n){
using namespace prime_sieve_explicit_internal;
if(n < 2) return 0;
CalcPrimeListUntil(n);
auto res = std::upper_bound(prime_list.begin(), prime_list.end(), n) - prime_list.begin();
return (int)res;
}
// [l, r)
std::vector<bool> SegmentedSieveExplicit(long long l, long long r){
assert(0 <= l); assert(l <= r);
long long d = r - l;
if(d == 0) return {};
std::vector<bool> res(d, true);
for(long long p=2; p*p<=r; p++) if(IsprimeExplicit(p)){
long long il = (l+p-1)/p, ir = (r+p-1)/p;
if(il <= p) il = p;
for(long long i=il; i<ir; i++) res[i*p-l] = false;
}
if(l < 2) for(long long p=l; p<2 && p<r; p++) res[l-p] = false;
return res;
}
} // namespace nachia
#include <utility>
namespace nachia{
// ax + by = gcd(a,b)
// return ( x, - )
std::pair<long long, long long> ExtGcd(long long a, long long b){
long long x = 1, y = 0;
while(b){
long long u = a / b;
std::swap(a-=b*u, b);
std::swap(x-=y*u, y);
}
return std::make_pair(x, a);
}
} // namespace nachia
namespace nachia{
class DynamicModSupplier{
using u64 = unsigned long long;
using Int = unsigned int;
private:
u64 imod;
Int mod;
// atcoder library
u64 reduce2(u64 z) const noexcept {
// atcoder library
#ifdef _MSC_VER
u64 x; _umul128(z, im, &x);
#else
using u128 = unsigned __int128;
u64 x = (u64)(((u128)(z)*imod) >> 64);
#endif
return z - x * mod;
}
public:
DynamicModSupplier(unsigned int MOD = 998244353) : mod(MOD) {
assert(2 <= MOD);
assert(MOD < (1u << 31));
imod = (u64)(-1) / mod + 1;
}
Int reduce(u64 z) const noexcept {
Int v = reduce2(z);
if(mod <= v) v += mod;
return v;
}
Int add(Int a, Int b) const { a += b; if(a >= mod){ a -= mod; } return a; }
Int sub(Int a, Int b) const { a -= b; if(a >= mod){ a += mod; } return a; }
Int mul(Int a, Int b) const { return reduce((u64)a * b); }
Int muladd(Int a, Int b, Int c) const { return reduce((u64)a * b + c); }
Int inv(Int a) const {
Int v = ExtGcd(a, mod).first;
return (v < mod) ? v : (v + mod);
}
Int pow(Int a, u64 i) const {
Int r = a, ans = 1;
while(i){
if(i & 1) ans = mul(ans, r);
i /= 2;
r = mul(r, r);
}
return ans;
}
Int getMod() const { return mod; }
};
} // namespace nachia
namespace nachia{
template<unsigned int IDENTIFER, class IDENTIFER2 = void>
class DynamicModint{
using Int = unsigned int;
using MyType = DynamicModint;
private:
static DynamicModSupplier _c;
Int v;
template< class Elem >
static Elem SafeMod(Elem x, Int mod){
if(x < 0){
if(0 <= x+mod) return x + mod;
return mod - ((-(x+mod)-1) % mod + 1);
}
return x % mod;
}
public:
DynamicModint() : v(0) {}
DynamicModint(const MyType& r) : v(r.v) {}
MyType& operator=(const MyType&) = default;
DynamicModint(long long x){ v = SafeMod(x, _c.getMod()); }
static MyType raw(Int _v){ MyType res; res.v = _v; return res; }
static void setMod(DynamicModSupplier sup){ _c = std::move(sup); }
MyType operator+=(MyType r){ return v = _c.add(v, r.v); }
MyType operator+(MyType r) const { return raw(_c.add(v, r.v)); }
MyType operator-=(MyType r){ return v = _c.sub(v, r.v); }
MyType operator-(MyType r) const { return raw(_c.sub(v, r.v)); }
MyType operator-() const { return raw(v ? _c.getMod()-v : 0); }
MyType operator*=(MyType r){ return v = _c.mul(v, r.v); }
MyType operator*(MyType r) const { return raw(_c.mul(v, r.v)); }
MyType operator/=(MyType r){ return v = _c.mul(v, _c.inv(r.v)); }
MyType operator/(MyType r) const { return raw(_c.mul(v, _c.inv(r.v))); }
MyType inv() const { return raw(_c.inv(v)); }
MyType pow(unsigned long long r) const { return raw(_c.pow(v, r)); }
MyType mulAdd(MyType mul, MyType add) const { return raw(_c.muladd(v, mul.v, add.v)); }
Int val() const { return v; }
Int operator*() const { return v; }
static Int mod(){ return _c.getMod(); }
};
template<unsigned int IDENTIFER, class IDENTIFER2>
DynamicModSupplier DynamicModint<IDENTIFER, IDENTIFER2>::_c;
} // namespace nachia
namespace nachia{
template<unsigned int MOD>
struct StaticModint{
private:
using u64 = unsigned long long;
unsigned int x;
public:
using my_type = StaticModint;
template< class Elem >
static Elem safe_mod(Elem x){
if(x < 0){
if(0 <= x+MOD) return x + MOD;
return MOD - ((-(x+MOD)-1) % MOD + 1);
}
return x % MOD;
}
StaticModint() : x(0){}
StaticModint(const my_type& a) : x(a.x){}
StaticModint& operator=(const my_type&) = default;
template< class Elem >
StaticModint(Elem v) : x(safe_mod(v)){}
unsigned int operator*() const noexcept { return x; }
my_type& operator+=(const my_type& r) noexcept { auto t = x + r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator+(const my_type& r) const noexcept { my_type res = *this; return res += r; }
my_type& operator-=(const my_type& r) noexcept { auto t = x + MOD - r.x; if(t >= MOD) t -= MOD; x = t; return *this; }
my_type operator-(const my_type& r) const noexcept { my_type res = *this; return res -= r; }
my_type operator-() const noexcept { my_type res = *this; res.x = ((res.x == 0) ? 0 : (MOD - res.x)); return res; }
my_type& operator*=(const my_type& r)noexcept { x = (u64)x * r.x % MOD; return *this; }
my_type operator*(const my_type& r) const noexcept { my_type res = *this; return res *= r; }
my_type pow(unsigned long long i) const noexcept {
my_type a = *this, res = 1;
while(i){ if(i & 1){ res *= a; } a *= a; i >>= 1; }
return res;
}
my_type inv() const { return my_type(ExtGcd(x, MOD).first); }
unsigned int val() const noexcept { return x; }
static constexpr unsigned int mod() { return MOD; }
static my_type raw(unsigned int val) noexcept { auto res = my_type(); res.x = val; return res; }
my_type& operator/=(const my_type& r){ return operator*=(r.inv()); }
my_type operator/(const my_type& r) const { return operator*(r.inv()); }
};
} // namespace nachia
i64 powm(i64 a, i64 i, i64 m){
if(i == 0) return 1 % m;
auto x = powm(a*a%m, i/2, m);
if(i%2) x = x * a % m;
return x;
}
void testcase(){
using Modint = nachia::DynamicModint<0>;
i64 D = 50000;
vector<string> ans;
vector<i64> ansx;
vector<array<i64,3>> QPI;
vector<i64> B;
vector<i64> primes;
for(i64 p=2; p<=D; p++) if(nachia::IsprimeExplicit(p)){
primes.push_back(p);
{
i64 q = p; while(q*p <= D) q *= p;
B.push_back(q);
}
for(i64 q=p; q<=D; q*=p){
QPI.push_back({q,p,0});
ansx.push_back(q);
}
}
sort(QPI.begin(), QPI.end());
sort(ansx.begin(), ansx.end());
i64 T; cin >> T;
vector<i64> inN(T);
for(auto& t : inN) cin >> t;
vector<vector<i64>> F(ansx.size() + 1);
rep(i,T){
i64 f = upper_bound(ansx.begin(), ansx.end(), inN[i]) - ansx.begin();
inN[i] = f;
F[f].push_back(i);
//cout << "f=" << f << endl;
}
vector<string> R(F.size());
R[0] = "1/1\n";
//for(auto b : B) cout << b << " ";
//cout << endl;
i64 N = primes.size();
vector<i64> Z(N, 1);
vector<i64> A(N, 1);
rep(i,QPI.size()) QPI[i][2] = i;
for(auto [q,p,d] : QPI){
//cout << "q = " << q << " , p = " << p << " , d = " << d << endl;
rep(x,N){
if(p != primes[x]) Z[x] = Z[x] * p % B[x];
else A[x] = q;
}
//cout << "q = " << q << " , p = " << p << " , d = " << d << endl;
if(F[d+1].size()){
using M2 = nachia::StaticModint<998244353>;
M2 f = 0;
M2 g = 1;
i64 n = 0; while(n<N && A[n]>1) n++;
vector<i64> Q(n);
//cout << "q = " << q << " , p = " << p << " , d = " << d << " , n = " << n << endl;
rep(i,n){
Modint::setMod(A[i]);
Q[i] = Modint::raw(Z[i]%A[i]).inv().val();
auto a = M2(A[i]).inv();
//Q[i] = powm(Z[i]%A[i], A[i]/primes[i]*(primes[i]-1)-1, A[i]);
f += a * M2(Q[i]);
g *= a;
}
//cout << "q = " << q << " , p = " << p << " , d = " << d << endl;
int p = (f - g).val();
//cout << p << endl;
string res;
rep(i,n){
if(i+p>=n){
res += to_string(Q[i] - A[i]);
} else {
if(i) res += "+";
res += to_string(Q[i]);
}
res +="/";
res += to_string(A[i]);
}
res += "\n";
R[d] = res;
}
}
rep(i,T){
cout << R[inN[i]];
}
}
int main(){
ios::sync_with_stdio(false); cin.tie(nullptr);
testcase();
return 0;
}
详细
Test #1:
score: 0
Wrong Answer
time: 78ms
memory: 4016kb
input:
2 3 6
output:
result:
wrong answer Not enough lines of fractions for the 1th test case